19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transduction of the Streptococcus pyogenes bacteriophage Φm46.1, carrying resistance genes mef(A) and tet(O), to other Streptococcus species

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Φm46.1 – Streptococcus pyogenes bacteriophage carrying mef(A) and tet(O), respectively, encoding resistance to macrolides (M phenotype) and tetracycline – is widespread in S. pyogenes but has not been reported outside this species. Φm46.1 is transferable in vitro among S. pyogenes isolates, but no information is available about its transferability to other Streptococcus species. We thus investigated Φm46.1 for its ability to be transduced in vitro to recipients of different Streptococcus species. Transductants were obtained from recipients of Streptococcus agalactiae, Streptococcus gordonii, and Streptococcus suis. Retransfer was always achieved, and from S. suis to S. pyogenes occurred at a much greater frequency than in the opposite direction. In transductants Φm46.1 retained its functional properties, such as inducibility with mitomycin C, presence both as a prophage and as a free circular form, and transferability. The transductants shared the same Φm46.1 chromosomal integration site as the donor, at the 3′ end of a conserved RNA uracil methyltransferase ( rum) gene, which is an integration hotspot for a variety of genetic elements. No transfer occurred to recipients of Streptococcus pneumoniae, Streptococcus oralis, and Streptococcus salivarius, even though rum-like genes were also detected in the sequenced genomes of these species. A largely overlapping 18-bp critical sequence, where the site-specific recombination process presumably takes place, was identified in the rum genes of all recipients, including those of the species yielding no transductants. Growth assays to evaluate the fitness cost of Φm46.1 acquisition disclosed a negligible impact on S. pyogenes, S. agalactiae, and S. gordonii transductants and a noticeable fitness advantage in S. suis. The S. suis transductant also displayed marked overexpression of the autolysin-encoding gene atl.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Detection of erythromycin-resistant determinants by PCR.

          Erythromycin resistance determinants include Erm methylases, efflux pumps, and inactivating enzymes. To distinguish the different mechanisms of resistance in clinical isolates, PCR primers were designed so that amplification of the partial gene products could be detected in multiplex PCRs. This methodology enables the direct sequencing of amplified PCR products that can be used to compare resistance determinants in clinical strains. Further, this methodology could be useful in surveillance studies of erythromycin-resistant determinants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of a multilocus sequence typing scheme for the pig pathogen Streptococcus suis: identification of virulent clones and potential capsular serotype exchange.

            Streptococcus suis is an important pathogen of pigs and occasionally causes serious human disease. However, little is known about the S. suis population structure, the clonal relationships between strains, the potential of particular clones to cause disease, and the relevance of serotype as a marker for epidemiology. Here we describe a multilocus sequence typing (MLST) scheme for S. suis developed in order to begin to address these issues. Seven housekeeping gene fragments from each of 294 S. suis isolates obtained from various S. suis diseases and from asymptomatic carriage representing 28 serotypes and nine distinct countries of origin were sequenced. Between 32 and 46 alleles per locus were identified, giving the ability to distinguish >1.6 x 10(11) sequence types (STs). However only 92 STs were identified in this study. Of the 92 STs 18 contained multiple isolates, the most common of which, ST1, was identified on 141 occasions from six countries. Assignment of the STs to lineages resulted in 37 being identified as unique and unrelated STs while the remaining 55 were assigned to 10 complexes. ST complexes ST1, ST27, and ST87 dominate the population; while the ST1 complex was strongly associated with isolates from septicemia, meningitis, and arthritis, the ST87 and ST27 complexes were found to contain significantly higher numbers of lung isolates. In agreement with the observed distribution of disease-causing isolates of S. suis, most isolates previously characterized as of high virulence in porcine infection models belong to ST1, while isolates belonging to other STs appear to be less virulent in general. Finally nine STs were found to contain isolates of multiple serotypes, and many isolates belonging to the same serotypes were found to have very disparate genetic backgrounds. As well as highlighting that the serotype can often be a poor indicator of genetic relatedness between S. suis isolates, these findings suggest that capsular genes may be moving horizontally through the S. suis population.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prophage genomics.

              The majority of the bacterial genome sequences deposited in the National Center for Biotechnology Information database contain prophage sequences. Analysis of the prophages suggested that after being integrated into bacterial genomes, they undergo a complex decay process consisting of inactivating point mutations, genome rearrangements, modular exchanges, invasion by further mobile DNA elements, and massive DNA deletion. We review the technical difficulties in defining such altered prophage sequences in bacterial genomes and discuss theoretical frameworks for the phage-bacterium interaction at the genomic level. The published genome sequences from three groups of eubacteria (low- and high-G+C gram-positive bacteria and gamma-proteobacteria) were screened for prophage sequences. The prophages from Streptococcus pyogenes served as test case for theoretical predictions of the role of prophages in the evolution of pathogenic bacteria. The genomes from further human, animal, and plant pathogens, as well as commensal and free-living bacteria, were included in the analysis to see whether the same principles of prophage genomics apply for bacteria living in different ecological niches and coming from distinct phylogenetical affinities. The effect of selection pressure on the host bacterium is apparently an important force shaping the prophage genomes in low-G+C gram-positive bacteria and gamma-proteobacteria.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                18 October 2014
                08 January 2015
                2014
                : 5
                : 746
                Affiliations
                [1] 1Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche Ancona, Italy
                [2] 2Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School Ancona, Italy
                Author notes

                Edited by: Adam Paul Roberts, University College London, UK

                Reviewed by: Giovanni Gherardi, University Campus Biomedico, Italy; Orietta Massidda, Università di Cagliari, Italy

                *Correspondence: Andrea Brenciani, Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Via Tronto 10/A, 60126 Ancona, Italy e-mail: andreabrenciani@ 123456yahoo.it

                This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology.

                Article
                10.3389/fmicb.2014.00746
                4288039
                25620959
                a03eb6dd-6976-4385-b822-ec4dffe022c4
                Copyright © 2015 Giovanetti, Brenciani, Morroni, Tiberi, Pasquaroli, Mingoia and Varaldo.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 September 2014
                : 09 December 2014
                Page count
                Figures: 2, Tables: 3, Equations: 0, References: 43, Pages: 9, Words: 0
                Categories
                Microbiology
                Original Research Article

                Microbiology & Virology
                streptococcus species,φm46.1,bacteriophages,mef(a),tet(o),transductionchromosomal,integration,fitness cost

                Comments

                Comment on this article