0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Vascular effects of 17 beta-estradiol in male Sprague-Dawley rats.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bolus intravenous injections of 100 micrograms/kg 17 beta-estradiol significantly decreased the pressor responses to norepinephrine (NE; 0.3 microgram/kg) at the fourth, fifth, and sixth hour in anesthetized male Sprague-Dawley rats. At doses of 10(-6) to 3 x 10(-5) M, 17 beta-estradiol relaxed the sustained phase of contraction in male Sprague-Dawley rat tail artery helical strips precontracted in vitro by [Arg8]vasopressin (AVP), KCl, or NE. The effect was dose dependent. At doses of 3 x 10(-6) to 3 x 10(-5) M, it also decreased the initial phase of tension generation and extracellular Ca(2+)-dependent vasoconstriction induced by NE, AVP, or KCl in a dose-dependent manner in male Sprague-Dawley rat tail artery helical strips. 17 beta-Estradiol (2 x 10(-8) to 2 x 10(-6) M) decreased the voltage-dependent inward Ca2+ current and the intracellular free Ca2+ concentration ([Ca2+]i) increment induced by 15 mM KCl in a dose-dependent manner (3.6 x 10(-8) to 3.6 x 10(-6) M) in vascular smooth muscle cells (VSMC) isolated from male Sprague-Dawley rat tail arteries. We suggest that, at pharmacological doses, estrogen has a direct vasodilating effect on the rat tail artery that is mediated by its inhibitory effect on Ca2+ influx through voltage-dependent Ca2+ channels. The inhibitory effect of estrogen on the pressor responses to NE or AVP may be correlated with its modulation of VSMC [Ca2+]i through its actions on membrane Ca2+ channels.

          Related collections

          Author and article information

          Journal
          Am. J. Physiol.
          The American journal of physiology
          American Physiological Society
          0002-9513
          0002-9513
          Mar 1994
          : 266
          : 3 Pt 2
          Affiliations
          [1 ] Department of Physiology, University of Alberta, Edmonton, Canada.
          Article
          10.1152/ajpheart.1994.266.3.H967
          8160845
          a05c1955-a00d-4a44-97c5-5e2621893d12
          History

          Comments

          Comment on this article