8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Apolipoprotein A-I (ApoA-I), Immunity, Inflammation and Cancer

      review-article
      1 , 2 , 1 , 2 , 2 , *
      Cancers
      MDPI
      apolipoprotein A-I, HDL, cancer, immunity, inflammation, review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Apolipoprotein A-I (ApoA-I), the major protein component of high-density lipoproteins (HDL) is a multifunctional protein, involved in cholesterol traffic and inflammatory and immune response regulation. Many studies revealing alterations of ApoA-I during the development and progression of various types of cancer suggest that serum ApoA-I levels may represent a useful biomarker contributing to better estimation of cancer risk, early cancer diagnosis, follow up, and prognosis stratification of cancer patients. In addition, recent in vitro and animal studies disclose a more direct, tumor suppressive role of ApoA-I in cancer pathogenesis, which involves anti-inflammatory and immune-modulatory mechanisms. Herein, we review recent epidemiologic, clinicopathologic, and mechanistic studies investigating the role of ApoA-I in cancer biology, which suggest that enhancing the tumor suppressive activity of ApoA-I may contribute to better cancer prevention and treatment.

          Related collections

          Most cited references160

          • Record: found
          • Abstract: found
          • Article: not found

          Ulcerative colitis

          Ulcerative colitis is a chronic inflammatory disease affecting the colon, and its incidence is rising worldwide. The pathogenesis is multifactorial, involving genetic predisposition, epithelial barrier defects, dysregulated immune responses, and environmental factors. Patients with ulcerative colitis have mucosal inflammation starting in the rectum that can extend continuously to proximal segments of the colon. Ulcerative colitis usually presents with bloody diarrhoea and is diagnosed by colonoscopy and histological findings. The aim of management is to induce and then maintain remission, defined as resolution of symptoms and endoscopic healing. Treatments for ulcerative colitis include 5-aminosalicylic acid drugs, steroids, and immunosuppressants. Some patients can require colectomy for medically refractory disease or to treat colonic neoplasia. The therapeutic armamentarium for ulcerative colitis is expanding, and the number of drugs with new targets will rapidly increase in coming years.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes.

            Cells from some tumors use an altered metabolic pattern compared with that of normal differentiated adult cells in the body. Tumor cells take up much more glucose and mainly process it through aerobic glycolysis, producing large quantities of secreted lactate with a lower use of oxidative phosphorylation that would generate more adenosine triphosphate (ATP), water, and carbon dioxide. This is the Warburg effect, which provides substrates for cell growth and division and free energy (ATP) from enhanced glucose use. This metabolic switch places the emphasis on producing intermediates for cell growth and division, and it is regulated by both oncogenes and tumor suppressor genes in a number of key cancer-producing pathways. Blocking these metabolic pathways or restoring these altered pathways could lead to a new approach in cancer treatments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nucleotide signalling during inflammation.

              Inflammatory conditions are associated with the extracellular release of nucleotides, particularly ATP. In the extracellular compartment, ATP predominantly functions as a signalling molecule through the activation of purinergic P2 receptors. Metabotropic P2Y receptors are G-protein-coupled, whereas ionotropic P2X receptors are ATP-gated ion channels. Here we discuss how signalling events through P2 receptors alter the outcomes of inflammatory or infectious diseases. Recent studies implicate a role for P2X/P2Y signalling in mounting appropriate inflammatory responses critical for host defence against invading pathogens or tumours. Conversely, P2X/P2Y signalling can promote chronic inflammation during ischaemia and reperfusion injury, inflammatory bowel disease or acute and chronic diseases of the lungs. Although nucleotide signalling has been used clinically in patients before, research indicates an expanding field of opportunities for specifically targeting individual P2 receptors for the treatment of inflammatory or infectious diseases.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                01 August 2019
                August 2019
                : 11
                : 8
                : 1097
                Affiliations
                [1 ]Department of Biology, Medical School, University of Crete, Heraklion, Voutes, 71110 Crete, Greece
                [2 ]Department of Pathology, Medical School, University of Crete, Heraklion, Voutes, 71110 Crete, Greece
                Author notes
                [* ]Correspondence: drakil@ 123456uoc.gr ; Tel.: +30-2810394708
                [†]

                These authors contributed equally to this work.

                Article
                cancers-11-01097
                10.3390/cancers11081097
                6721368
                31374929
                a078c953-e575-4f11-a2be-0fbf60c69e21
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 June 2019
                : 30 July 2019
                Categories
                Review

                apolipoprotein a-i,hdl,cancer,immunity,inflammation,review
                apolipoprotein a-i, hdl, cancer, immunity, inflammation, review

                Comments

                Comment on this article