17
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A comparative description of the mesosomal musculature in Sphecidae and Ampulicidae (Hymenoptera, Apoidea) using 3D techniques

      , , , ,
      Deutsche Entomologische Zeitschrift
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Conflicting hypotheses about the relationships among the major lineages of aculeate Hymenoptera clearly show the necessity of detailed comparative morphological studies. Using micro-computed tomography and 3D reconstructions, the skeletal musculature of the meso- and metathorax and the first and second abdominal segment in Apoidea are described. Females of Sceliphron destillatorium, Sphex (Fernaldina) lucae (both Sphecidae), and Ampulex compressa (Ampulicidae) were examined. The morphological terminology provided by the Hymenoptera Anatomy Ontology is used. Up to 42 muscles were found. The three species differ in certain numerical and structural aspects. Ampulicidae differs significantly from Sphecidae in the metathorax and the anterior abdomen. The metapleural apodeme and paracoxal ridge are weakly developed in Ampulicidae, which affect some muscular structures. Furthermore, the muscles that insert on the coxae and trochanters are broader and longer in Ampulicidae. A conspicuous characteristic of Sphecidae is the absence of the metaphragma. Overall, we identified four hitherto unrecognized muscles. Our work suggests additional investigations on structures discussed in this paper.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: not found
          • Article: not found
          Is Open Access

          Phylogenomic Insights into the Evolution of Stinging Wasps and the Origins of Ants and Bees.

          The stinging wasps (Hymenoptera: Aculeata) are an extremely diverse lineage of hymenopteran insects, encompassing over 70,000 described species and a diversity of life history traits, including ectoparasitism, cleptoparasitism, predation, pollen feeding (bees [Anthophila] and Masarinae), and eusociality (social vespid wasps, ants, and some bees) [1]. The most well-studied lineages of Aculeata are the ants, which are ecologically dominant in most terrestrial ecosystems [2], and the bees, the most important lineage of angiosperm-pollinating insects [3]. Establishing the phylogenetic affinities of ants and bees helps us understand and reconstruct patterns of social evolution as well as fully appreciate the biological implications of the switch from carnivory to pollen feeding (pollenivory). Despite recent advancements in aculeate phylogeny [4-11], considerable uncertainty remains regarding higher-level relationships within Aculeata, including the phylogenetic affinities of ants and bees [5-7]. We used ultraconserved element (UCE) phylogenomics [7, 12] to resolve relationships among stinging-wasp families, gathering sequence data from >800 UCE loci and 187 samples, including 30 out of 31 aculeate families. We analyzed the 187-taxon dataset using multiple analytical approaches, and we evaluated several alternative taxon sets. We also tested alternative hypotheses for the phylogenetic positions of ants and bees. Our results present a highly supported phylogeny of the stinging wasps. Most importantly, we find unequivocal evidence that ants are the sister group to bees+apoid wasps (Apoidea) and that bees are nested within a paraphyletic Crabronidae. We also demonstrate that taxon choice can fundamentally impact tree topology and clade support in phylogenomic inference.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Gross Anatomy Ontology for Hymenoptera

            Hymenoptera is an extraordinarily diverse lineage, both in terms of species numbers and morphotypes, that includes sawflies, bees, wasps, and ants. These organisms serve critical roles as herbivores, predators, parasitoids, and pollinators, with several species functioning as models for agricultural, behavioral, and genomic research. The collective anatomical knowledge of these insects, however, has been described or referred to by labels derived from numerous, partially overlapping lexicons. The resulting corpus of information—millions of statements about hymenopteran phenotypes—remains inaccessible due to language discrepancies. The Hymenoptera Anatomy Ontology (HAO) was developed to surmount this challenge and to aid future communication related to hymenopteran anatomy. The HAO was built using newly developed interfaces within mx, a Web-based, open source software package, that enables collaborators to simultaneously contribute to an ontology. Over twenty people contributed to the development of this ontology by adding terms, genus differentia, references, images, relationships, and annotations. The database interface returns an Open Biomedical Ontology (OBO) formatted version of the ontology and includes mechanisms for extracting candidate data and for publishing a searchable ontology to the Web. The application tools are subject-agnostic and may be used by others initiating and developing ontologies. The present core HAO data constitute 2,111 concepts, 6,977 terms (labels for concepts), 3,152 relations, 4,361 sensus (links between terms, concepts, and references) and over 6,000 text and graphical annotations. The HAO is rooted with the Common Anatomy Reference Ontology (CARO), in order to facilitate interoperability with and future alignment to other anatomy ontologies, and is available through the OBO Foundry ontology repository and BioPortal. The HAO provides a foundation through which connections between genomic, evolutionary developmental biology, phylogenetic, taxonomic, and morphological research can be actualized. Inherent mechanisms for feedback and content delivery demonstrate the effectiveness of remote, collaborative ontology development and facilitate future refinement of the HAO.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Micro-computed tomography: Introducing new dimensions to taxonomy

              Abstract Continuous improvements in the resolution of three-dimensional imaging have led to an increased application of these techniques in conventional taxonomic research in recent years. Coupled with an ever increasing research effort in cybertaxonomy, three-dimensional imaging could give a boost to the development of virtual specimen collections, allowing rapid and simultaneous access to accurate virtual representations of type material. This paper explores the potential of micro-computed tomography (X-ray micro-tomography), a non-destructive three-dimensional imaging technique based on mapping X-ray attenuation in the scanned object, for supporting research in systematics and taxonomy. The subsequent use of these data as virtual type material, so-called “cybertypes”, and the creation of virtual collections lie at the core of this potential. Sample preparation, image acquisition, data processing and presentation of results are demonstrated using polychaetes (bristle worms), a representative taxon of macro-invertebrates, as a study object. Effects of the technique on the morphological, anatomical and molecular identity of the specimens are investigated. The paper evaluates the results and discusses the potential and the limitations of the technique for creating cybertypes. It also discusses the challenges that the community might face to establish virtual collections. Potential future applications of three-dimensional information in taxonomic research are outlined, including an outlook to new ways of producing, disseminating and publishing taxonomic information.
                Bookmark

                Author and article information

                Journal
                Deutsche Entomologische Zeitschrift
                DEZ
                Pensoft Publishers
                1860-1324
                1435-1951
                May 11 2020
                May 11 2020
                : 67
                : 1
                : 51-67
                Article
                10.3897/dez.67.49493
                a0841415-c414-40e7-a7da-2bf2b88a0fa9
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article