1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Peripheral effects of vagus nerve stimulation on anxiety and extinction of conditioned fear in rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vagus nerve stimulation (VNS) enhances extinction of conditioned fear in rats. Previous findings support the hypothesis that VNS effects on extinction are due to enhanced consolidation of extinction memories through promotion of plasticity in extinction-related brain pathways however, alternative explanations are plausible. According to one hypothesis, VNS may produce a hedonic effect and enhance extinction through counter-conditioning. According to another hypothesis, VNS reduces anxiety during exposure and this weakens the association of conditioned stimuli with aversive conditioned responses. The present set of experiments (1) used conditioned place preference (CPP) to identify potential rewarding effects associated with VNS and (2) examined the peripheral effects of VNS on anxiety and extinction enhancement. Male Sprague–Dawley rats were surgically implanted with cuff electrodes around the vagus nerve and subjected to a CPP task in which VNS and sham stimulation were each paired with one of two distinct contexts over the course of 5 d. Following this procedure, rats did not show a place preference, suggesting that VNS is not rewarding or aversive. The role of the peripheral parasympathetic system in the anxiolytic effect of VNS on the elevated plus maze was examined by blocking peripheral muscarinic receptors with intraperitoneal administration of methyl scopolamine prior to VNS. Methyl scopolamine blocked the VNS-induced reduction in anxiety but did not interfere with VNS enhancement of extinction of conditioned fear, indicating that the anxiety-reducing effect of VNS is not necessary for the extinction enhancement.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          The use of the elevated plus maze as an assay of anxiety-related behavior in rodents.

          The elevated plus maze is a widely used behavioral assay for rodents and it has been validated to assess the anti-anxiety effects of pharmacological agents and steroid hormones, and to define brain regions and mechanisms underlying anxiety-related behavior. Briefly, rats or mice are placed at the junction of the four arms of the maze, facing an open arm, and entries/duration in each arm are recorded by a video-tracking system and observer simultaneously for 5 min. Other ethological parameters (i.e., rears, head dips and stretched-attend postures) can also be observed. An increase in open arm activity (duration and/or entries) reflects anti-anxiety behavior. In our laboratory, rats or mice are exposed to the plus maze on one occasion; thus, results can be obtained in 5 min per rodent.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat.

            A novel test for the selective identification of anxiolytic and anxiogenic drug effects in the rat is described, using an elevated + -maze consisting of two open arms and two enclosed arms. The use of this test for detecting such drug effects was validated behaviourally, physiologically, and pharmacologically. Rats made significantly fewer entries into the open arms than into the closed arms, and spent significantly less time in open arms. Confinement to the open arms was associated with the observation of significantly more anxiety-related behaviours, and of significantly greater plasma corticosterone concentrations, than confinement to the closed arms. Neither novelty nor illumination was a significant contributor to the behaviour of the rats on the + -maze. A significant increase in the percentage of time spent on the open arms and the number of entries into the open arms was observed only within clinically effective anxiolytics (chlordiazepoxide, diazepam and, less effectively, phenobarbitone). Compounds that cause anxiety in man significantly reduced the percentage of entries into, and time spent on, the open arms (yohimbine, pentylenetetrazole, caffeine, amphetamine). Neither antidepressants nor major tranquilisers had a specific effect. Exposure to a holeboard immediately before placement on the + -maze showed that behaviour on the maze was not clearly correlated either with exploratory head-dipping or spontaneous locomotor activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reversing pathological neural activity using targeted plasticity.

              Brain changes in response to nerve damage or cochlear trauma can generate pathological neural activity that is believed to be responsible for many types of chronic pain and tinnitus. Several studies have reported that the severity of chronic pain and tinnitus is correlated with the degree of map reorganization in somatosensory and auditory cortex, respectively. Direct electrical or transcranial magnetic stimulation of sensory cortex can temporarily disrupt these phantom sensations. However, there is as yet no direct evidence for a causal role of plasticity in the generation of pain or tinnitus. Here we report evidence that reversing the brain changes responsible can eliminate the perceptual impairment in an animal model of noise-induced tinnitus. Exposure to intense noise degrades the frequency tuning of auditory cortex neurons and increases cortical synchronization. Repeatedly pairing tones with brief pulses of vagus nerve stimulation completely eliminated the physiological and behavioural correlates of tinnitus in noise-exposed rats. These improvements persisted for weeks after the end of therapy. This method for restoring neural activity to normal may be applicable to a variety of neurological disorders.
                Bookmark

                Author and article information

                Journal
                Learn Mem
                Learn. Mem
                learnmem
                Learning & Memory
                Cold Spring Harbor Laboratory Press
                1072-0502
                1549-5485
                July 2019
                : 26
                : 7
                : 245-251
                Affiliations
                [1 ]School of Behavior and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
                [2 ]Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
                Author notes
                Article
                LM048447Nob
                10.1101/lm.048447.118
                6581007
                31209119
                a0e6bb47-ce3f-4a92-a667-c52e0723ec05
                © 2019 Noble et al.; Published by Cold Spring Harbor Laboratory Press

                This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first 12 months after the full-issue publication date (see http://learnmem.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 29 January 2019
                : 7 May 2019
                Page count
                Pages: 7
                Funding
                Funded by: Defense Advanced Research Projects Agency (DARPA) , open-funder-registry 10.13039/100000185;
                Award ID: DARPA-BAA-14-38
                Award ID: DARPA-BAA-15-06
                Funded by: Biological Technologies Office (BTO)
                Funded by: Electrical Prescriptions (ElectRx)
                Funded by: Space and Naval Warfare Systems Center, Pacific
                Award ID: DARPA-BAA-14-38
                Award ID: DARPA-BAA-15-06
                Funded by: NIMH , open-funder-registry 10.13039/100000025;
                Award ID: MH099655
                Categories
                Research

                Comments

                Comment on this article