Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Vitamin K epoxide reductase complex subunit 1 (VKORC1): the key protein of the vitamin K cycle.

      Antioxidants & Redox Signaling
      Amino Acid Sequence, Animals, Coumarins, chemistry, Cysteine, Gene Expression Regulation, Gene Expression Regulation, Enzymologic, Humans, Mixed Function Oxygenases, metabolism, physiology, Molecular Sequence Data, Pichia, Protein Conformation, Spodoptera, Thrombosis, Vitamin K, Vitamin K Epoxide Reductases

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vitamin K epoxide, a by-product of the carboxylation of blood coagulation factors, is reduced to vitamin K by an enzymatic system possessing vitamin K epoxide reductase (VKOR) activity. This system is the target of coumarin-derived drugs widely used in thrombosis therapy and prophylaxis. Recently, the key protein of the VKOR system has been identified. The human VKORC1 gene maps to chromosome 16 and consists of 3 exons encoding a 163-amino acid integral ER membrane protein with three or four predicted transmembrane alpha- helices. Expression of human VKORC1 in Spodoptera frugiperda (Sf9) cells and in Pichia pastoris results in enhanced VKOR activity over low endogenous constitutive levels. Sequence based search methods reveal that human VKORC1 belongs to a large family of homologous genes found in vertebrates, insects, plants, protists, archea, and bacteria. All orthologs share five completely conserved amino acids, including two cysteines found in a tetrapeptide motif presumably required for redox function. The recent discovery of the VKORC1 gene has initiated renewed interest in understanding VKOR activity. Analysis of VKORC1 protein structure and function will be crucial in understanding the VKOR catalytic mechanism, how anticoagulant drugs modulate VKOR activity, and the role of VKORC1 in downstream physiological and pathological pathways.

          Related collections

          Author and article information

          Comments

          Comment on this article