0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Greenhouse gas emissions from constructed wetlands: A bibliometric analysis and mini-review

      , , , , , ,
      Science of The Total Environment
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Science Mapping: A Systematic Review of the Literature

          We present a systematic review of the literature concerning major aspects of science mapping to serve two primary purposes: First, to demonstrate the use of a science mapping approach to perform the review so that researchers may apply the procedure to the review of a scientific domain of their own interest, and second, to identify major areas of research activities concerning science mapping, intellectual milestones in the development of key specialties, evolutionary stages of major specialties involved, and the dynamics of transitions from one specialty to another. We first introduce a theoretical framework of the evolution of a scientific specialty. Then we demonstrate a generic search strategy that can be used to construct a representative dataset of bibliographic records of a domain of research. Next, progressively synthesized co-citation networks are constructed and visualized to aid visual analytic studies of the domain’s structural and dynamic patterns and trends. Finally, trajectories of citations made by particular types of authors and articles are presented to illustrate the predictive potential of the analytic approach. The evolution of the science mapping research involves the development of a number of interrelated specialties. Four major specialties are discussed in detail in terms of four evolutionary stages: conceptualization, tool construction, application, and codification. Underlying connections between major specialties are also explored. The predictive analysis demonstrates citations trajectories of potentially transformative contributions. The systematic review is primarily guided by citation patterns in the dataset retrieved from the literature. The scope of the data is limited by the source of the retrieval, i.e. the Web of Science, and the composite query used. An iterative query refinement is possible if one would like to improve the data quality, although the current approach serves our purpose adequately. More in-depth analyses of each specialty would be more revealing by incorporating additional methods such as citation context analysis and studies of other aspects of scholarly publications. The underlying analytic process of science mapping serves many practical needs, notably bibliometric mapping, knowledge domain visualization, and visualization of scientific literature. In order to master such a complex process of science mapping, researchers often need to develop a diverse set of skills and knowledge that may span multiple disciplines. The approach demonstrated in this article provides a generic method for conducting a systematic review. Incorporating the evolutionary stages of a specialty into the visual analytic study of a research domain is innovative. It provides a systematic methodology for researchers to achieve a good understanding of how scientific fields evolve, to recognize potentially insightful patterns from visually encoded signs, and to synthesize various information so as to capture the state of the art of the domain.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Wastewater treatment for carbon capture and utilization

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies

              Nitrous oxide (N2O) is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO) production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH) or the reduction of nitrite (NO− 2) to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO− 2 to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria (AOB). In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO− 2, NH2OH, and nitroxyl (HNO). Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser absorption spectroscopy (QCLAS). In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build-up.
                Bookmark

                Author and article information

                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                January 2024
                January 2024
                : 906
                : 167582
                Article
                10.1016/j.scitotenv.2023.167582
                a1c43961-f902-4191-973d-90bdc38fbdb7
                © 2024

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article