16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptional Analysis of a Unique Set of Genes Involved in Schistosoma mansoni Female Reproductive Biology

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Schistosomiasis affects more than 200 million people globally. The pathology of schistosome infections is due to chronic tissue inflammation and damage from immune generated granulomas surrounding parasite eggs trapped in host tissues. Schistosoma species are unique among trematode parasites because they are dioecious; females require paring with male parasites in order to attain reproductive maturity and produce viable eggs. Ex vivo cultured females lose the ability to produce viable eggs due to an involution of the vitellarium and loss of mature oocytes. In order to better understand schistosome reproductive biology we used data generated by serial analysis of gene expression (SAGE) to identify uncharacterized genes which have different transcript abundance in mature females, those that have been paired with males, and immature females obtained from unisexual infections. To characterize these genes we used bioinformatics, transcript localization, and transcriptional analysis during the regression of in vitro cultured females. Genes transcribed exclusively in mature females localize primarily in the vitellocytes and/or the ovary. Genes transcribed exclusively in females from single sex infections localize to vitellocytes and subtegumental cells. As female reproductive tissues regress, eggshell precursor proteins and genes involved in eggshell synthesis largely have decreased transcript abundance. However, some genes with elevated transcript abundance in mature adults have increased gene expression following regression indicating that the genes in this study function both in eggshell biology as well as vitellogenesis and maintenance of female reproductive tissues. In addition, we found that genes enriched in females from single sex infections have increased expression during regression in ex vivo females. By using these transcriptional analyses we can direct research to examine the areas of female biology that are both relevant to understanding the overall process of female development and worm pairing while determining novel therapeutic approaches directed at the maturation of female schistosomes.

          Author Summary

          Schistosomiasis is a chronic, debilitating disease that affects over 200 million people globally. The pathology associated with schistosomiasis is caused by host immune responses to parasite eggs. Therefore, it is imperative to identify pathways responsible for controlling worm reproductive biology. Schistosome females must be in constant contact with male parasites in order to achieve reproductive maturity. The process of pairing and reproductive maturation in female worms is poorly understood, in part, because it does not occur outside of the host. In addition, when female schistosomes are removed from their mammalian host they regress to an immature state. In this study our goal was to characterize a unique set of genes in Schistosoma mansoni whose transcript abundance differs in mature and immature female worms. We found that the genes with higher transcript abundance in sexually mature female worms were expressed in female reproductive tissues, while those transcripts enriched in sexually immature worms were present in sub-surface somatic cells. Transcript abundance of the selected genes changed dramatically when females were removed from their host. These findings inform new approaches to study female worm biology and will provide insights into the processes of worm pairing and reproductive maturation.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The claudin gene family: expression in normal and neoplastic tissues

          Background The claudin (CLDN) genes encode a family of proteins important in tight junction formation and function. Recently, it has become apparent that CLDN gene expression is frequently altered in several human cancers. However, the exact patterns of CLDN expression in various cancers is unknown, as only a limited number of CLDN genes have been investigated in a few tumors. Methods We identified all the human CLDN genes from Genbank and we used the large public SAGE database to ascertain the gene expression of all 21 CLDN in 266 normal and neoplastic tissues. Using real-time RT-PCR, we also surveyed a subset of 13 CLDN genes in 24 normal and 24 neoplastic tissues. Results We show that claudins represent a family of highly related proteins, with claudin-16, and -23 being the most different from the others. From in silico analysis and RT-PCR data, we find that most claudin genes appear decreased in cancer, while CLDN3, CLDN4, and CLDN7 are elevated in several malignancies such as those originating from the pancreas, bladder, thyroid, fallopian tubes, ovary, stomach, colon, breast, uterus, and the prostate. Interestingly, CLDN5 is highly expressed in vascular endothelial cells, providing a possible target for antiangiogenic therapy. CLDN18 might represent a biomarker for gastric cancer. Conclusion Our study confirms previously known CLDN gene expression patterns and identifies new ones, which may have applications in the detection, prognosis and therapy of several human cancers. In particular we identify several malignancies that express CLDN3 and CLDN4. These cancers may represent ideal candidates for a novel therapy being developed based on CPE, a toxin that specifically binds claudin-3 and claudin-4.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Translational control by CPEB: a means to the end.

            The regulated translation of messenger RNA is essential for cell-cycle progression, establishment of the body plan during early development, and modulation of key activities in the central nervous system. Cytoplasmic polyadenylation, which is one mechanism of controlling translation, is driven by CPEB--a highly conserved, sequence-specific RNA-binding protein that binds to the cytoplasmic polyadenylation element, and modulates translational repression and mRNA localization. What are the features and functions of this multifaceted protein?
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of translational control by the 3' UTR in development and differentiation.

              Translational control plays a major role in early development, differentiation and the cell cycle. In this review, we focus on the four main mechanisms of translational control by 3' untranslated regions: 1. Cytoplasmic polyadenylation and deadenylation; 2. Recruitment of 4E binding proteins; 3. Regulation of ribosomal subunit binding; 4. Post-initiation repression by microRNAs. Proteins with conserved functions in translational control during development include cytoplasmic polyadenylation element binding proteins (CPEB/Orb), Pumilio, Bruno, Fragile X mental retardation protein and RNA helicases. The translational regulation of the mRNAs encoding cyclin B1, Oskar, Nanos, Male specific lethal 2 (Msl-2), lipoxygenase and Lin-14 is discussed.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                November 2012
                15 November 2012
                : 6
                : 11
                : e1907
                Affiliations
                [1]Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
                University of Queensland, Australia
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AAC DLW. Performed the experiments: AAC VPK. Analyzed the data: AAC DLW. Wrote the paper: AAC DLW.

                Article
                PNTD-D-12-00991
                10.1371/journal.pntd.0001907
                3499410
                23166854
                a1da9c16-9691-42a6-8c21-59a1de67dcf0
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 August 2012
                : 2 October 2012
                Page count
                Pages: 13
                Funding
                These studies were supported by National Institutes of Health-National Institute of Allergy and Infectious Diseases (NIH-NIAID) award R21AI097529. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Developmental Biology
                Zoology
                Helminthology
                Parasitology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article