39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review

      research-article
      * , ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          A number of recent publications have proposed that a family of image-derived indices, called texture features, can predict clinical outcome in patients with cancer. However, the investigation of multiple indices on a single data set can lead to significant inflation of type-I errors. We report a systematic review of the type-I error inflation in such studies and review the evidence regarding associations between patient outcome and texture features derived from positron emission tomography (PET) or computed tomography (CT) images.

          Methods

          For study identification PubMed and Scopus were searched (1/2000–9/2013) using combinations of the keywords texture, prognostic, predictive and cancer. Studies were divided into three categories according to the sources of the type-I error inflation and the use or not of an independent validation dataset. For each study, the true type-I error probability and the adjusted level of significance were estimated using the optimum cut-off approach correction, and the Benjamini-Hochberg method. To demonstrate explicitly the variable selection bias in these studies, we re-analyzed data from one of the published studies, but using 100 random variables substituted for the original image-derived indices. The significance of the random variables as potential predictors of outcome was examined using the analysis methods used in the identified studies.

          Results

          Fifteen studies were identified. After applying appropriate statistical corrections, an average type-I error probability of 76% (range: 34–99%) was estimated with the majority of published results not reaching statistical significance. Only 3/15 studies used a validation dataset. For the 100 random variables examined, 10% proved to be significant predictors of survival when subjected to ROC and multiple hypothesis testing analysis.

          Conclusions

          We found insufficient evidence to support a relationship between PET or CT texture features and patient survival. Further fit for purpose validation of these image-derived biomarkers should be supported by appropriate biological and statistical evidence before their association with patient outcome is investigated in prospective studies.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors.

          The purpose of this article is to review the status and limitations of anatomic tumor response metrics including the World Health Organization (WHO) criteria, the Response Evaluation Criteria in Solid Tumors (RECIST), and RECIST 1.1. This article also reviews qualitative and quantitative approaches to metabolic tumor response assessment with (18)F-FDG PET and proposes a draft framework for PET Response Criteria in Solid Tumors (PERCIST), version 1.0. PubMed searches, including searches for the terms RECIST, positron, WHO, FDG, cancer (including specific types), treatment response, region of interest, and derivative references, were performed. Abstracts and articles judged most relevant to the goals of this report were reviewed with emphasis on limitations and strengths of the anatomic and PET approaches to treatment response assessment. On the basis of these data and the authors' experience, draft criteria were formulated for PET tumor response to treatment. Approximately 3,000 potentially relevant references were screened. Anatomic imaging alone using standard WHO, RECIST, and RECIST 1.1 criteria is widely applied but still has limitations in response assessments. For example, despite effective treatment, changes in tumor size can be minimal in tumors such as lymphomas, sarcoma, hepatomas, mesothelioma, and gastrointestinal stromal tumor. CT tumor density, contrast enhancement, or MRI characteristics appear more informative than size but are not yet routinely applied. RECIST criteria may show progression of tumor more slowly than WHO criteria. RECIST 1.1 criteria (assessing a maximum of 5 tumor foci, vs. 10 in RECIST) result in a higher complete response rate than the original RECIST criteria, at least in lymph nodes. Variability appears greater in assessing progression than in assessing response. Qualitative and quantitative approaches to (18)F-FDG PET response assessment have been applied and require a consistent PET methodology to allow quantitative assessments. Statistically significant changes in tumor standardized uptake value (SUV) occur in careful test-retest studies of high-SUV tumors, with a change of 20% in SUV of a region 1 cm or larger in diameter; however, medically relevant beneficial changes are often associated with a 30% or greater decline. The more extensive the therapy, the greater the decline in SUV with most effective treatments. Important components of the proposed PERCIST criteria include assessing normal reference tissue values in a 3-cm-diameter region of interest in the liver, using a consistent PET protocol, using a fixed small region of interest about 1 cm(3) in volume (1.2-cm diameter) in the most active region of metabolically active tumors to minimize statistical variability, assessing tumor size, treating SUV lean measurements in the 1 (up to 5 optional) most metabolically active tumor focus as a continuous variable, requiring a 30% decline in SUV for "response," and deferring to RECIST 1.1 in cases that do not have (18)F-FDG avidity or are technically unsuitable. Criteria to define progression of tumor-absent new lesions are uncertain but are proposed. Anatomic imaging alone using standard WHO, RECIST, and RECIST 1.1 criteria have limitations, particularly in assessing the activity of newer cancer therapies that stabilize disease, whereas (18)F-FDG PET appears particularly valuable in such cases. The proposed PERCIST 1.0 criteria should serve as a starting point for use in clinical trials and in structured quantitative clinical reporting. Undoubtedly, subsequent revisions and enhancements will be required as validation studies are undertaken in varying diseases and treatments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The clonal evolution of tumor cell populations.

            P C Nowell (1976)
            It is proposed that most neoplasms arise from a single cell of origin, and tumor progression results from acquired genetic variability within the original clone allowing sequential selection of more aggressive sublines. Tumor cell populations are apparently more genetically unstable than normal cells, perhaps from activation of specific gene loci in the neoplasm, continued presence of carcinogen, or even nutritional deficiencies within the tumor. The acquired genetic insta0ility and associated selection process, most readily recognized cytogenetically, results in advanced human malignancies being highly individual karyotypically and biologically. Hence, each patient's cancer may require individual specific therapy, and even this may be thwarted by emergence of a genetically variant subline resistant to the treatment. More research should be directed toward understanding and controlling the evolutionary process in tumors before it reaches the late stage usually seen in clinical cancer.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Dangers of using "optimal" cutpoints in the evaluation of prognostic factors.

                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                4 May 2015
                2015
                : 10
                : 5
                : e0124165
                Affiliations
                [001]Division of Imaging Sciences and Biomedical Engineering, Kings College London 4th Floor, Lambeth Wing, St. Thomas Hospital, SE1 7EH, London, United Kingdom
                Stanford University Medical Center, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AC. Performed the experiments: AC. Analyzed the data: AC MJO PM. Contributed reagents/materials/analysis tools: AC MJO PM. Wrote the paper: AC MJO PM.

                Article
                PONE-D-14-18895
                10.1371/journal.pone.0124165
                4418696
                25938522
                a1eb0f82-7e1d-4eb5-8450-24faea9aa391
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 4 May 2014
                : 13 March 2015
                Page count
                Figures: 7, Tables: 3, Pages: 18
                Funding
                The authors acknowledge financial support from the CRUK and EPSRC in association with the MRC and DoH (England), the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy's & St Thomas' NHS Foundation Trust in partnership with King's College London and King’s College Hospital NHS Foundation Trust. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article