2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Construction and validation of a novel nomogram to predict cancer-specific survival in patients with gastric adenocarcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and aims

          Adenocarcinoma is one of the most common pathological types of gastric cancer. The aims of this study were to develop and validate prognostic nomograms that could predict the probability of cancer-specific survival (CSS) for gastric adenocarcinoma (GAC) patients at 1, 3, and 5 years.

          Methods

          In total, 7747 patients with GAC diagnosed between 2010 and 2015, and 4591 patients diagnosed between 2004 and 2009 from the Surveillance, Epidemiology, and End Results (SEER) database were included in this study. The 7747 patients were used as a prognostic cohort to explore GAC-related prognostic risk factors. Moreover, the 4591 patients were used for external validation. The prognostic cohort was also divided into a training and internal validation sets for construction and internal validation of the nomogram. CSS predictors were screened using least absolute shrinkage and selection operator regression analysis. A prognostic model was built using Cox hazard regression analysis and provided as static and dynamic network-based nomograms.

          Results

          The primary site, tumor grade, surgery of the primary site, T stage, N stage, and M stage were determined to be independent prognostic factors for CSS and were subsequently included in construction of the nomogram. CSS was accurately estimated using the nomogram at 1, 3, and 5 years. The areas under the curve (AUCs) for the training group at 1, 3, and 5 years were 0.816, 0.853, and 0.863, respectively. Following internal validation, these values were 0.817, 0.851, and 0.861. Further, the AUC of the nomogram was much greater than that of American Joint Committee on Cancer (AJCC) or SEER staging. Moreover, the anticipated and actual CSS values were in good agreement based on decision curves and time-calibrated plots. Then, patients from the two subgroups were divided into high- and low-risk groups based on this nomogram. The survival rate of high-risk patients was considerably lower than that of low-risk patients, according to Kaplan–Meier (K-M) curves ( p<0.0001).

          Conclusions

          A reliable and convenient nomogram in the form of a static nomogram or an online calculator was constructed and validated to assist physicians in quantifying the probability of CSS in GAC patients.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global Cancer Incidence and Mortality Rates and Trends--An Update

            There are limited published data on recent cancer incidence and mortality trends worldwide. We used the International Agency for Research on Cancer's CANCERMondial clearinghouse to present age-standardized cancer incidence and death rates for 2003-2007. We also present trends in incidence through 2007 and mortality through 2012 for select countries from five continents. High-income countries (HIC) continue to have the highest incidence rates for all sites, as well as for lung, colorectal, breast, and prostate cancer, although some low- and middle-income countries (LMIC) now count among those with the highest rates. Mortality rates from these cancers are declining in many HICs while they are increasing in LMICs. LMICs have the highest rates of stomach, liver, esophageal, and cervical cancer. Although rates remain high in HICs, they are plateauing or decreasing for the most common cancers due to decreases in known risk factors, screening and early detection, and improved treatment (mortality only). In contrast, rates in several LMICs are increasing for these cancers due to increases in smoking, excess body weight, and physical inactivity. LMICs also have a disproportionate burden of infection-related cancers. Applied cancer control measures are needed to reduce rates in HICs and arrest the growing burden in LMICs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Gastric Cancer: Epidemiology, Risk Factors, Classification, Genomic Characteristics and Treatment Strategies

              Gastric cancer (GC) is one of the most common malignancies worldwide and it is the fourth leading cause of cancer-related death. GC is a multifactorial disease, where both environmental and genetic factors can have an impact on its occurrence and development. The incidence rate of GC rises progressively with age; the median age at diagnosis is 70 years. However, approximately 10% of gastric carcinomas are detected at the age of 45 or younger. Early-onset gastric cancer is a good model to study genetic alterations related to the carcinogenesis process, as young patients are less exposed to environmental carcinogens. Carcinogenesis is a multistage disease process specified by the progressive development of mutations and epigenetic alterations in the expression of various genes, which are responsible for the occurrence of the disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                09 February 2023
                2023
                : 13
                : 1114847
                Affiliations
                [1] 1 The First School of Clinical Medicine, Lanzhou University , Lanzhou, China
                [2] 2 Department of General Surgery, The First Hospital of Lanzhou University , Lanzhou, China
                [3] 3 Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University , Lanzhou, China
                Author notes

                Edited by: Emmanuel Gabriel, Mayo Clinic, United States

                Reviewed by: Weijian Guo, Fudan University, China; Hailin Tang, Sun Yat-sen University Cancer Center (SYSUCC), China; Yue Zheng, Dana-Farber/Brigham and Women’s Cancer Center, United States

                *Correspondence: Xun Li, lxdr21@ 123456126.com

                This article was submitted to Gastrointestinal Cancers: Gastric and Esophageal Cancers, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2023.1114847
                9948249
                36845677
                a220907b-f5a0-4423-b706-fad2666e24c9
                Copyright © 2023 Nie, Zhang, Yan, Xie, Zhang and Li

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 December 2022
                : 20 January 2023
                Page count
                Figures: 10, Tables: 3, Equations: 0, References: 30, Pages: 13, Words: 5058
                Funding
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                This study was supported in part by the Gansu Province Health Industry Project (GSWSKY2016-27).
                Categories
                Oncology
                Original Research

                Oncology & Radiotherapy
                gastric adenocarcinoma (gac),cancer-specific survival (css),prognostic nomogram,risk factors,american joint committee on cancer staging (ajcc),surveillance,epidemiology,end results database (seer database)

                Comments

                Comment on this article