7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Glutathione transferases.

          This review describes the three mammalian glutathione transferase (GST) families, namely cytosolic, mitochondrial, and microsomal GST, the latter now designated MAPEG. Besides detoxifying electrophilic xenobiotics, such as chemical carcinogens, environmental pollutants, and antitumor agents, these transferases inactivate endogenous alpha,beta-unsaturated aldehydes, quinones, epoxides, and hydroperoxides formed as secondary metabolites during oxidative stress. These enzymes are also intimately involved in the biosynthesis of leukotrienes, prostaglandins, testosterone, and progesterone, as well as the degradation of tyrosine. Among their substrates, GSTs conjugate the signaling molecules 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2) and 4-hydroxynonenal with glutathione, and consequently they antagonize expression of genes trans-activated by the peroxisome proliferator-activated receptor gamma (PPARgamma) and nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). Through metabolism of 15d-PGJ2, GST may enhance gene expression driven by nuclear factor-kappaB (NF-kappaB). Cytosolic human GST exhibit genetic polymorphisms and this variation can increase susceptibility to carcinogenesis and inflammatory disease. Polymorphisms in human MAPEG are associated with alterations in lung function and increased risk of myocardial infarction and stroke. Targeted disruption of murine genes has demonstrated that cytosolic GST isoenzymes are broadly cytoprotective, whereas MAPEG proteins have proinflammatory activities. Furthermore, knockout of mouse GSTA4 and GSTZ1 leads to overexpression of transferases in the Alpha, Mu, and Pi classes, an observation suggesting they are part of an adaptive mechanism that responds to endogenous chemical cues such as 4-hydroxynonenal and tyrosine degradation products. Consistent with this hypothesis, the promoters of cytosolic GST and MAPEG genes contain antioxidant response elements through which they are transcriptionally activated during exposure to Michael reaction acceptors and oxidative stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health.

            Glutathione S-transferases (GSTs) are abundant proteins encoded by a highly divergent, ancient gene family. Soluble GSTs form dimers, each subunit of which contains active sites that bind glutathione and hydrophobic ligands. Plant GSTs attach glutathione to electrophilic xenobiotics, which tags them for vacuolar sequestration. The role of GSTs in metabolism is unclear, although their complex regulation by environmental stimuli implies that they have important protective functions. Recent studies show that GSTs catalyse glutathione-depend-ent isomerizations and the reduction of toxic organic hydroperoxides. GSTs might also have non-catalytic roles as carriers for phytochemicals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots.

              NaCl stress is a major abiotic stress limiting the productivity and the geographical distribution of many plant species. Roots are the primary site of salinity perception. To understand better NaCl stress responses in Arabidopsis roots, a comparative proteomic analysis of roots that had been exposed to 150 mM NaCl for either 6 h or 48 h was conducted. Changes in the abundance of protein species within roots were examined using two-dimensional electrophoresis. Among the >1000 protein spots reproducibly detected on each gel, the abundance of 112 protein spots decreased and 103 increased, at one or both time points, in response to NaCl treatment. Through liquid-chromatography-tandem mass spectrometry, identity was assigned to 86 of the differentially abundant spots. The proteins identified included many previously characterized stress-responsive proteins and others related to processes including scavenging for reactive oxygen species; signal transduction; translation, cell wall biosynthesis, protein translation, processing and degradation; and metabolism of energy, amino acids, and hormones. At the resolution of individual genes and proteins, poor statistical correlation (6 h, r= -0.13; 48 h, r=0.11) of these protein expression data with previous microarray results was detected, supporting the concept that post-transcriptional regulation plays an important role in stress-responsive gene expression, and highlighting the need for combined transcriptomic and proteomic analyses.
                Bookmark

                Author and article information

                Journal
                Plant Cell, Tissue and Organ Culture (PCTOC)
                Plant Cell Tiss Organ Cult
                Springer Nature America, Inc
                0167-6857
                1573-5044
                April 2014
                January 17 2014
                April 2014
                : 117
                : 1
                : 99-112
                Article
                10.1007/s11240-014-0424-5
                a2e5ab6b-4ed5-4a76-afbe-c0a4f6a87d54
                © 2014
                History

                Comments

                Comment on this article