0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Long non-coding RNA BDNF-AS modulates osteogenic differentiation of bone marrow-derived mesenchymal stem cells

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone.

          Unlike humans, mouse bone marrow-derived mesenchymal stem cells (MSCs) cannot be easily harvested by adherence to plastic owing to the contamination of cultures by hematopoietic cells. The design of the protocol described here is based on the phenomenon that compact bones abound in MSCs and hematopoietic cells exist in the marrow cavities and the inner interfaces of the bones. The procedure includes flushing bone marrow out of the long bones, digesting the bone chips with collagenase type II, deprivation of the released cells and culturing the digested bone fragments, out of which fibroblast-like cells migrate and grow in the defined medium. The entire technique requires 5 d before the adherent cells are readily passaged. Further identification assays confirm that these cells are MSCs. We provide an easy and reproducible method to harvest mouse MSCs that does not require depletion of hematopoietic cells by sorting or immunomagnetic techniques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathophysiology of osteoporosis: new mechanistic insights.

            Understanding of the pathophysiology of osteoporosis has evolved to include compromised bone strength and skeletal fragility caused by several factors: (1) defects in microarchitecture of trabeculae, (2) defective intrinsic material properties of bone tissue, (3) defective repair of microdamage from normal daily activities, and (4) excessive bone remodeling rates. These factors occur in the context of age-related bone loss. Clinical studies of estrogen deprivation, antiresorptives, mechanical loading, and disuse have helped further knowledge of the factors affecting bone quality and the mechanisms that underlie them. This progress has led to several new drug targets in the treatment of osteoporosis. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The regulation of differentiation in mesenchymal stem cells.

              Mesenchymal stromal/stem cells (MSCs) are a population of stromal cells present in the bone marrow and most connective tissues, capable of differentiation into mesenchymal tissues such as bone and cartilage. MSCs are attractive candidates for biological cell-based tissue repair approaches because of their extensive proliferative ability in culture while retaining their mesenchymal multilineage differentiation potential. In addition to its undoubted scientific interest, the prospect of monitoring and controlling MSC differentiation is a crucial regulatory and clinical requirement. Hence, the molecular regulation of MSC differentiation has been extensively studied. Most of the studies are in vitro, because the identity of MSCs in their tissues of origin in vivo remains undefined. This review addresses the current knowledge of the molecular basis of differentiation of cultured MSCs, with a particular focus on chondrogenesis and osteogenesis. Building on the information coming from developmental biology studies of embryonic skeletogenesis, several signaling pathways and transcription factors have been investigated and shown to play critical roles in MSC differentiation. In particular, the Wnt and transforming growth factor-β/bone morphogenetic protein signaling pathways are well known to modulate in MSCs the molecular differentiation into cartilage and bone. Relevant to the emerging concept of stem cell niches is the demonstration that physical factors can also participate in the regulation of MSC differentiation. Knowledge of the regulation of MSC differentiation will be critical in the design of three-dimensional culture systems and bioreactors for automated bioprocessing through mathematical models applied to systems biology and network science.
                Bookmark

                Author and article information

                Journal
                Molecular and Cellular Biochemistry
                Mol Cell Biochem
                Springer Science and Business Media LLC
                0300-8177
                1573-4919
                August 2018
                December 15 2017
                August 2018
                : 445
                : 1-2
                : 59-65
                Article
                10.1007/s11010-017-3251-2
                29247276
                a2e67753-b061-4594-94fd-f4dcfc7a5cad
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article