10
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neurotropic Viruses, Astrocytes, and COVID-19

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          At the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was discovered in China, causing a new coronavirus disease, termed COVID-19 by the WHO on February 11, 2020. At the time of this paper (January 31, 2021), more than 100 million cases have been recorded, which have claimed over 2 million lives worldwide. The most important clinical presentation of COVID-19 is severe pneumonia; however, many patients present various neurological symptoms, ranging from loss of olfaction, nausea, dizziness, and headache to encephalopathy and stroke, with a high prevalence of inflammatory central nervous system (CNS) syndromes. SARS-CoV-2 may also target the respiratory center in the brainstem and cause silent hypoxemia. However, the neurotropic mechanism(s) by which SARS-CoV-2 affects the CNS remain(s) unclear. In this paper, we first address the involvement of astrocytes in COVID-19 and then elucidate the present knowledge on SARS-CoV-2 as a neurotropic virus as well as several other neurotropic flaviviruses (with a particular emphasis on the West Nile virus, tick-borne encephalitis virus, and Zika virus) to highlight the neurotropic mechanisms that target astroglial cells in the CNS. These key homeostasis-providing cells in the CNS exhibit many functions that act as a favorable milieu for virus replication and possibly a favorable environment for SARS-CoV-2 as well. The role of astrocytes in COVID-19 pathology, related to aging and neurodegenerative disorders, and environmental factors, is discussed. Understanding these mechanisms is key to better understanding the pathophysiology of COVID-19 and for developing new strategies to mitigate the neurotropic manifestations of COVID-19.

          Related collections

          Most cited references158

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

          Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding the Warburg effect: the metabolic requirements of cell proliferation.

            In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed "the Warburg effect." Aerobic glycolysis is an inefficient way to generate adenosine 5'-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus

              Summary A SARS-CoV-2 variant carrying the Spike protein amino acid change D614G has become the most prevalent form in the global pandemic. Dynamic tracking of variant frequencies revealed a recurrent pattern of G614 increase at multiple geographic levels: national, regional and municipal. The shift occurred even in local epidemics where the original D614 form was well established prior to the introduction of the G614 variant. The consistency of this pattern was highly statistically significant, suggesting that the G614 variant may have a fitness advantage. We found that the G614 variant grows to higher titer as pseudotyped virions. In infected individuals G614 is associated with lower RT-PCR cycle thresholds, suggestive of higher upper respiratory tract viral loads, although not with increased disease severity. These findings illuminate changes important for a mechanistic understanding of the virus, and support continuing surveillance of Spike mutations to aid in the development of immunological interventions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                09 April 2021
                2021
                09 April 2021
                : 15
                : 662578
                Affiliations
                [1] 1Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana , Ljubljana, Slovenia
                [2] 2Celica Biomedical , Ljubljana, Slovenia
                [3] 3Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana , Ljubljana, Slovenia
                Author notes

                Edited by: Alexei Verkhratsky, The University of Manchester, United Kingdom

                Reviewed by: Arthur Morgan Butt, University of Portsmouth, United Kingdom; Alexey Semyanov, Institute of Bioorganic Chemistry (RAS), Russia

                *Correspondence: Robert Zorec, robert.zorec@ 123456mf.uni-lj.si

                This article was submitted to Non-Neuronal Cells, a section of the journal Frontiers in Cellular Neuroscience

                Article
                10.3389/fncel.2021.662578
                8062881
                33897376
                a2f284ae-dbbb-4bf5-a766-02b56a4e86e4
                Copyright © 2021 Tavčar, Potokar, Kolenc, Korva, Avšič-Županc, Zorec and Jorgačevski.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 February 2021
                : 22 March 2021
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 160, Pages: 14, Words: 0
                Funding
                Funded by: Javna Agencija za Raziskovalno Dejavnost RS 10.13039/501100004329
                Award ID: P3 310
                Award ID: P3 0083
                Award ID: J3 9266
                Award ID: J3-2515
                Categories
                Neuroscience
                Review

                Neurosciences
                sars-cov-2,covid-19,flavivirus,neurotropic virus,neuroinfection,astrocyte
                Neurosciences
                sars-cov-2, covid-19, flavivirus, neurotropic virus, neuroinfection, astrocyte

                Comments

                Comment on this article