5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NOD1/RIP2 signalling enhances the microglia-driven inflammatory response and undergoes crosstalk with inflammatory cytokines to exacerbate brain damage following intracerebral haemorrhage in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Secondary brain damage caused by the innate immune response and subsequent proinflammatory factor production is a major factor contributing to the high mortality of intracerebral haemorrhage (ICH). Nucleotide-binding oligomerization domain 1 (NOD1)/receptor-interacting protein 2 (RIP2) signalling has been reported to participate in the innate immune response and inflammatory response. Therefore, we investigated the role of NOD1/RIP2 signalling in mice with collagenase-induced ICH and in cultured primary microglia challenged with hemin.

          Methods

          Adult male C57BL/6 mice were subjected to collagenase for induction of ICH model in vivo. Cultured primary microglia and BV2 microglial cells (microglial cell line) challenged with hemin aimed to simulate the ICH model in vitro. We first defined the expression of NOD1 and RIP2 in vivo and in vitro using an ICH model by western blotting. The effect of NOD1/RIP2 signalling on ICH-induced brain injury volume, neurological deficits, brain oedema, and microglial activation were assessed following intraventricular injection of either ML130 (a NOD1 inhibitor) or GSK583 (a RIP2 inhibitor). In addition, levels of JNK/P38 MAPK, IκBα, and inflammatory factors, including tumour necrosis factor-α (TNF-α), interleukin (IL)-1β, and inducible nitric oxide synthase (iNOS) expression, were analysed in ICH-challenged brain and hemin-exposed cultured primary microglia by western blotting. Finally, we investigated whether the inflammatory factors could undergo crosstalk with NOD1 and RIP2.

          Results

          The levels of NOD1 and its adaptor RIP2 were significantly elevated in the brains of mice in response to ICH and in cultured primary microglia, BV2 cells challenged with hemin. Administration of either a NOD1 or RIP2 inhibitor in mice with ICH prevented microglial activation and neuroinflammation, followed by alleviation of ICH-induced brain damage. Interestingly, the inflammatory factors interleukin (IL)-1β and tumour necrosis factor-α (TNF-α), which were enhanced by NOD1/RIP2 signalling, were found to contribute to the NOD1 and RIP2 upregulation in our study.

          Conclusion

          NOD1/RIP2 signalling played an important role in the regulation of the inflammatory response during ICH. In addition, a vicious feedback cycle was observed between NOD1/RIP2 and IL-1β/TNF-α, which could to some extent result in sustained brain damage during ICH. Hence, our study highlights NOD1/RIP2 signalling as a potential therapeutic target to protect the brain against secondary brain damage during ICH.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12974-020-02015-9.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis.

          Since the early 1980s, imaging techniques have enabled population-based studies of intracerebral haemorrhage. We aimed to assess the incidence, case fatality, and functional outcome of intracerebral haemorrhage in relation to age, sex, ethnic origin, and time period in studies published since 1980. From PubMed and Embase searches with predefined inclusion criteria, we identified population-based studies published between January, 1980, and November, 2008. We calculated incidence and case fatality. Incidences for multiple studies were pooled in a random-effects binomial meta-analysis. Time trends of case fatality were assessed with weighted linear-regression analysis. 36 eligible studies described 44 time periods (mid-year range 1983-2006). These studies included 8145 patients with intracerebral haemorrhage. Incidence did not decrease between 1980 and 2008. Overall incidence was 24.6 per 100 000 person-years (95% CI 19.7-30.7). Incidence was not significantly lower in women than in men (overall incidence ratio 0.85, 95% CI 0.61-1.18). Using the age group 45-54 years as reference, incidence ratios increased from 0.10 (95% CI 0.06-0.14) for people aged less than 45 years to 9.6 (6.6-13.9) for people older than 85 years. Median case fatality at 1 month was 40.4% (range 13.1-61.0) and did not decrease over time, and was lower in Japan (16.7%, 95% CI 15.0-18.5) than elsewhere (42.3%, 40.9-43.6). Six studies reported functional outcome, with independency rates of between 12% and 39%. Incidence of intracerebral haemorrhage per 100 000 person-years was 24.2 (95% CI 20.9-28.0) in white people, 22.9 (14.8-35.6) in black people, 19.6 (15.7-24.5) in Hispanic people, and 51.8 (38.8-69.3) in Asian people. Incidence of intracerebral haemorrhage increases with age and has not decreased between 1980 and 2006. Case fatality is lower in Japan than elsewhere, increases with age, and has not decreased over time. More data on functional outcome are needed. Netherlands Heart Foundation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NOD1 and NOD2: signaling, host defense, and inflammatory disease.

            The nucleotide-binding oligomerization domain (NOD) proteins NOD1 and NOD2, the founding members of the intracellular NOD-like receptor family, sense conserved motifs in bacterial peptidoglycan and induce proinflammatory and antimicrobial responses. Here, we discuss recent developments about the mechanisms by which NOD1 and NOD2 are activated by bacterial ligands, the regulation of their signaling pathways, and their role in host defense and inflammatory disease. Several routes for the entry of peptidoglycan ligands to the host cytosol to trigger activation of NOD1 and NOD2 have been elucidated. Furthermore, genetic screens and biochemical analyses have revealed mechanisms that regulate NOD1 and NOD2 signaling. Finally, recent studies have suggested several mechanisms to account for the link between NOD2 variants and susceptibility to Crohn's disease. Further understanding of NOD1 and NOD2 should provide new insight into the pathogenesis of disease and the development of new strategies to treat inflammatory and infectious disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke.

              Microglia/macrophages are the major immune cells involved in the defence against brain damage. Their morphology and functional changes are correlated with the release of danger signals induced by stroke. These cells are normally responsible for clearing away dead neural cells and restoring neuronal functions. However, when excessively activated by the damage-associated molecular patterns following stroke, they can produce a large number of proinflammatory cytokines that can disrupt neural cells and the blood-brain barrier and influence neurogenesis. These effects indicate the important roles of microglia/macrophages in the pathophysiological processes of stroke. However, the modifiable and adaptable nature of microglia/macrophages may also be beneficial for brain repair and not just result in damage. These distinct roles may be attributed to the different microglia/macrophage phenotypes because the M1 population is mainly destructive, while the M2 population is neuroprotective. Additionally, different gene expression signature changes in microglia/macrophages have been found in diverse inflammatory milieus. These biofunctional features enable dual roles for microglia/macrophages in brain damage and repair. Currently, it is thought that the proper inflammatory milieu may provide a suitable microenvironment for neurogenesis; however, detailed mechanisms underlying the inflammatory responses that initiate or inhibit neurogenesis remain unknown. This review summarizes recent progress concerning the mechanisms involved in brain damage, repair and regeneration related to microglia/macrophage activation and phenotype transition after stroke. We also argue that future translational studies should be targeting multiple key regulating molecules to improve brain repair, which should be accompanied by the concept of a "therapeutic time window" for sequential therapies.
                Bookmark

                Author and article information

                Contributors
                wm171722014@163.com , guiyuncui@foxmail.com
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                1 December 2020
                1 December 2020
                2020
                : 17
                : 364
                Affiliations
                [1 ]GRID grid.417303.2, ISNI 0000 0000 9927 0537, Department of Neurology, Xuzhou first People’s Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, , Xuzhou Medical University, ; No. 269 University Road, Tongshan District, Xuzhou, Jiangsu China
                [2 ]GRID grid.417303.2, ISNI 0000 0000 9927 0537, Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, , Xuzhou Medical University, ; No. 99 West Huaihai Road, Xuzhou, 221006 Jiangsu Province China
                [3 ]GRID grid.32224.35, ISNI 0000 0004 0386 9924, Department of Neurology, Mass General Institute of Neurodegenerative Diseases, , Massachusetts General Hospital and Harvard Medical School, ; Charlestown, USA
                [4 ]Department of Rehabilitation Medicine, Linyi Cancer Hospital, Linyi, Shandong China
                [5 ]GRID grid.413389.4, Department of Neurology, , Second Affiliated Hospital of Xuzhou Medical University, ; Xuzhou, Jiangsu China
                Author information
                http://orcid.org/0000-0003-0251-0648
                Article
                2015
                10.1186/s12974-020-02015-9
                7708246
                33261639
                a2fdfb41-18b5-404e-ba45-18b344fa86b5
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 22 May 2020
                : 29 October 2020
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81571210 and 81771282
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Neurosciences
                nod1,rip2,microglial activation,inflammatory response,intracerebral haemorrhage
                Neurosciences
                nod1, rip2, microglial activation, inflammatory response, intracerebral haemorrhage

                Comments

                Comment on this article