39
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: not found
      Is Open Access

      Suppression of A549 cell proliferation and metastasis by calycosin via inhibition of the PKC-α/ERK1/2 pathway: An in vitro investigation

      Molecular Medicine Reports
      D.A. Spandidos
      calycosin, protein kinase c-α/extracellular signal-regulated kinase 1/2, lung cancer, invasion, migration

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The migration and invasion of lung cancer cells into the extracellular matrix contributes to the high mortality rates of lung cancer. The protein kinase C (PKC) and downstream signaling pathways are important in the invasion and migration of lung cancer cells. Calycosin (Cal), an effector chemical from Astragalus has been reported to affect the recurrence and metastasis of cancer cells via the regulation of the protein expression of matrix metalloproteinases (MMPs). The inhibition of Cal on the migration and invasion of A549 cells was investigated in the present study. Cell viability and apoptosis assays were performed using MTT and flow cytometric analyses. A wound healing assay and Transwell invasion assay were performed to evaluate the effect of Cal on A549 cell migration and invasion. Invasion-associated proteins, including MMP-2, MMP-9, E-cadherin (E-cad), integrin β1, PKC-α and extracellular signal-regulated kinase 1/2 (ERK1/2) were detected using western blotting. In addition, PKC-α inhibitor, AEB071, and ERK1/2 inhibitor, PD98059, were used to determine the association between the suppression of PKC-α/ERK1/2 and invasion, MMP-2, MMP-9, E-cad and integrin β1. Cal was observed to suppress cell proliferation and induce apoptosis. There were significant differences between the phorbol-12-myristate-13-acetate (TPA)-induced A549 cells treated with Cal and the untreated cells in the rates of migration and invasion. The levels of MMP-2, MMP-9, E-cad and integrin β1 in the TPA-induced A549 cells changed markedly, compared with the untreated cells. In addition, the suppression of Cal was affected by the PKC inhibitor, AEB071, an ERK1/2 inhibitor, PD98059. The results of the present study indicated that Cal inhibited the proliferation, adhesion, migration and invasion of the TPA-induced A549 cells. The Cal-induced repression of PKC-α/ERK1/2, increased the expression of E-Cad and inhibited the expression levels of MMP-2, MMP-9 and integrin β1, which possibly demonstrates the mechanism underlying the biological anticancer effects of Cal.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          E-cadherin-integrin crosstalk in cancer invasion and metastasis.

          E-cadherin is a single-pass transmembrane protein that mediates homophilic cell-cell interactions. Tumour progression is often associated with the loss of E-cadherin function and the transition to a more motile and invasive phenotype. This requires the coordinated regulation of both E-cadherin-mediated cell-cell adhesions and integrin-mediated adhesions that contact the surrounding extracellular matrix (ECM). Regulation of both types of adhesion is dynamic as cells respond to external cues from the tumour microenvironment that regulate polarity, directional migration and invasion. Here, we review the mechanisms by which tumour cells control the cross-regulation between dynamic E-cadherin-mediated cell-cell adhesions and integrin-mediated cell-matrix contacts, which govern the invasive and metastatic potential of tumours. In particular, we will discuss the role of the adhesion-linked kinases Src, focal adhesion kinase (FAK) and integrin-linked kinase (ILK), and the Rho family of GTPases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell migration.

            Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Baicalein Inhibits the Invasion and Metastatic Capabilities of Hepatocellular Carcinoma Cells via Down-Regulation of the ERK Pathway

              Baicalein, a widely used Chinese herbal medicine, has historically been used in anti-inflammatory and anti-cancer therapies. However, the anti-metastatic effect and molecular mechanism(s) of baicalein on hepatocellular carcinoma (HCC) remain poorly understood. Therefore, the purpose of this study was to assess the anti-metastatic effects of baicalein and related mechanism(s) on HCC. Based on assays utilized in both HCC cell lines and in an animal model, we found that baicalein inhibited tumor cell metastasis in vivo and in vitro. Furthermore, after treatment with baicalein for 24 hours, there was a decrease in the levels of matrix metalloproteinase-2 (MMP-2), MMP-9 and urokinase-type plasminogen activator (u-PA) expression as well as proteinase activity in hepatocellular carcinoma MHCC97H cells. Meanwhile, the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 were increased in a dose-dependent fashion. Moreover, baicalein treatment dramatically decreased the levels of the phosphorylated forms of MEK1 and ERK1/2. MEK1 overexpression partially blocked the anti-metastatic effects of baicalein. Combined treatment with an ERK inhibitor (U0126) and baicalein resulted in a synergistic reduction in MMP-2, MMP-9 and u-PA expression and an increase in TIMP-1 and TIMP-2 expression; the invasive capabilities of MHCC97H cells were also inhibited. In conclusion, baicalein inhibits tumor cell invasion and metastasis by reducing cell motility and migration via the suppression of the ERK pathway, suggesting that baicalein is a potential therapeutic agent for HCC.
                Bookmark

                Author and article information

                Journal
                26498639
                4758323
                10.3892/mmr.2015.4449
                https://creativecommons.org/licenses/by-nc-nd/4.0/

                calycosin,protein kinase c-α/extracellular signal-regulated kinase 1/2,lung cancer,invasion,migration

                Comments

                Comment on this article