8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Intracardiac angiotensin-converting enzyme inhibition improves diastolic function in patients with left ventricular hypertrophy due to aortic stenosis.

      Circulation
      Aged, Angiotensin-Converting Enzyme Inhibitors, administration & dosage, therapeutic use, Aortic Valve Stenosis, complications, Cardiomyopathy, Dilated, drug therapy, physiopathology, Coronary Vessels, Diastole, Enalaprilat, Female, Heart, Hemodynamics, drug effects, Humans, Hypertrophy, Left Ventricular, etiology, Injections, Intra-Arterial, Male, Middle Aged

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiac hypertrophy is associated with elevated intracardiac angiotensin-converting enzyme activity, which may contribute to diastolic dysfunction. We infused enalaprilat (0.05 mg/min) for 15 minutes into the left coronary arteries of 20 adult patients with left ventricular (LV) hypertrophy due to aortic stenosis (mean aortic valve area, 0.7 +/- 0.2 cm2) and 10 patients with dilated cardiomyopathy (mean ejection fraction, 35 +/- 4%) and assessed (1) simultaneous changes in LV micromanometer pressure and dimensions, (2) LV regional wall motion analyzed by the area method, and (3) Doppler flow-velocity profiles. Systemic neurohormonal activation did not occur with the selective left coronary artery infusion; there were no changes in plasma renin activity, angiotensin-converting enzyme activity, or atrial natriuretic peptide. In patients with aortic stenosis, LV end-diastolic pressure declined from 25 +/- 2 to 20 +/- 2 mm Hg (P < .05). LV pressure-volume and LV pressure-dimension relations showed downward shifts by ventriculography and echocardiography, respectively, indicating improved diastolic distensibility. Regional area change during isovolumic relaxation increased in the anterior segments perfused with enalaprilat but decreased in the inferior segments, indicating acceleration of isovolumic relaxation in the anterior segments and reciprocal shortening in the inferior segments. Regional peak filling rate increased in the anterior segments but not in the inferior segments, and the regional area stiffness constant decreased in the anterior segments but not in the inferior segments. There were no changes in heart rate, cardiac output, or right atrial pressure, excluding alterations in right ventricular/pericardial constraint. In contrast, in the patients with dilated cardiomyopathy the decrease in LV end-diastolic pressure from 22 +/- 2 to 18 +/- 2 mm Hg (P < .05) was accompanied by a significant fall in right atrial pressure (9 +/- 1 to 6 +/- 1 mm Hg), implicating alterations in pericardial constraint. The patients with dilated cardiomyopathy showed no improvement in regional diastolic relaxation, filling, or distensibility. Intracoronary enalaprilat at a dosage that did not cause systemic neurohormonal activation improved LV diastolic chamber distensibility and regional relaxation and filling in patients with LV hypertrophy due to aortic stenosis. In contrast, these effects of intracoronary enalaprilat on diastolic function were not observed in patients with dilated cardiomyopathy who did not have concentric hypertrophy. These observations support the hypothesis that the cardiac renin-angiotensin system is activated in patients with concentric pressure-overload hypertrophy and that this activation may contribute to impaired diastolic function.

          Related collections

          Author and article information

          Comments

          Comment on this article