7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Arginine insertion and loss of N-linked glycosylation site in HIV-1 envelope V3 region confer CXCR4-tropism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The third variable region (V3) of HIV-1 envelope glycoprotein gp120 plays a key role in determination of viral coreceptor usage (tropism). However, which combinations of mutations in V3 confer a tropism shift is still unclear. A unique pattern of mutations in antiretroviral therapy-naive HIV-1 patient was observed associated with the HIV-1 tropism shift CCR5 to CXCR4. The insertion of arginine at position 11 and the loss of the N-linked glycosylation site were indispensable for acquiring pure CXCR4-tropism, which were confirmed by cell-cell fusion assay and phenotype analysis of recombinant HIV-1 variants. The same pattern of mutations in V3 and the associated tropism shift were identified in two of 53 other patients (3.8%) with CD4 + cell count <200/mm 3. The combination of arginine insertion and loss of N-linked glycosylation site usually confers CXCR4-tropism. Awareness of this rule will help to confirm the tropism prediction from V3 sequences by conventional rules.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Protein structure prediction and structural genomics.

          Genome sequencing projects are producing linear amino acid sequences, but full understanding of the biological role of these proteins will require knowledge of their structure and function. Although experimental structure determination methods are providing high-resolution structure information about a subset of the proteins, computational structure prediction methods will provide valuable information for the large fraction of sequences whose structures will not be determined experimentally. The first class of protein structure prediction methods, including threading and comparative modeling, rely on detectable similarity spanning most of the modeled sequence and at least one known structure. The second class of methods, de novo or ab initio methods, predict the structure from sequence alone, without relying on similarity at the fold level between the modeled sequence and any of the known structures. In this Viewpoint, we begin by describing the essential features of the methods, the accuracy of the models, and their application to the prediction and understanding of protein function, both for single proteins and on the scale of whole genomes. We then discuss the important role that protein structure prediction methods play in the growing worldwide effort in structural genomics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Change in Coreceptor Use Correlates with Disease Progression in HIV-1–Infected Individuals

            Recent studies have identified several coreceptors that are required for fusion and entry of Human Immunodeficiency Virus type 1 (HIV-1) into CD4+ cells. One of these receptors, CCR5, serves as a coreceptor for nonsyncytium inducing (NSI), macrophage-tropic strains of HIV-1, while another, fusin or CXCR-4, functions as a coreceptor for T cell line–adapted, syncytiuminducing (SI) strains. Using sequential primary isolates of HIV-1, we examined whether viruses using these coreceptors emerge in vivo and whether changes in coreceptor use are associated with disease progression. We found that isolates of HIV-1 from early in the course of infection predominantly used CCR5 for infection. However, in patients with disease progression, the virus expanded its coreceptor use to include CCR5, CCR3, CCR2b, and CXCR-4. Use of CXCR-4 as a coreceptor was only seen with primary viruses having an SI phenotype and was restricted by the env gene of the virus. The emergence of variants using this coreceptor was associated with a switch from NSI to SI phenotype, loss of sensitivity to chemokines, and decreasing CD4+ T cell counts. These results suggest that HIV-1 evolves during the course of infection to use an expanded range of coreceptors for infection, and that this adaptation is associated with progression to AIDS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of a V3-containing HIV-1 gp120 core.

              The third variable region (V3) of the HIV-1 gp120 envelope glycoprotein is immunodominant and contains features essential for coreceptor binding. We determined the structure of V3 in the context of an HIV-1 gp120 core complexed to the CD4 receptor and to the X5 antibody at 3.5 angstrom resolution. Binding of gp120 to cell-surface CD4 would position V3 so that its coreceptor-binding tip protrudes 30 angstroms from the core toward the target cell membrane. The extended nature and antibody accessibility of V3 explain its immunodominance. Together, the results provide a structural rationale for the role of V3 in HIV entry and neutralization.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                08 August 2013
                2013
                : 3
                : 2389
                Affiliations
                [1 ]AIDS Clinical Center, National Center for Global Health and Medicine , 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
                [2 ]Pathogen Genomics Center, National Institute of Infectious Diseases , 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
                [3 ]Clinical Research Center, National Hospital Organization Nagoya Medical Center , 4-1-1 Sannomaru, Naka-ku, Nagoya 460-0001, Japan
                [4 ]Center for AIDS Research, Kumamoto University , 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
                Author notes
                Article
                srep02389
                10.1038/srep02389
                3737504
                23925152
                a34d3df9-0b47-4d41-b33e-7126b5d5b2be
                Copyright © 2013, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareALike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 12 April 2013
                : 24 July 2013
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article