3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficient shRNA-based knockdown of multiple target genes for cell therapy using a chimeric miRNA cluster platform

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genome engineering technologies are powerful tools in cell-based immunotherapy to optimize or fine-tune cell functionalities. However, their use for multiple gene edits poses relevant biological and technical challenges. Short hairpin RNA (shRNA)-based cell engineering bypasses these criticalities and represents a valid alternative to CRISPR-based gene editing. Here, we describe a microRNA (miRNA)-based multiplex shRNA platform obtained by combining highly efficient miRNA scaffolds into a chimeric cluster, to deliver up to four shRNA-like sequences. Thanks to its limited size, our cassette could be deployed in a one-step process along with all the CAR components, streamlining the generation of engineered CAR T cells. The plug-and-play design of the shRNA platform allowed us to swap each shRNA-derived guide sequence without affecting the system performance. Appropriately choosing the target sequences, we were able to either achieve a functional KO, or fine-tune the expression levels of the target genes, all without the need for gene editing. Through our strategy we achieved easy, safe, efficient, and tunable modulation of multiple target genes simultaneously. This approach allows for the effective introduction of multiple functionally relevant tweaks in the transcriptome of the engineered cells, which may lead to increased performance in challenging environments, e.g., solid tumors.

          Graphical abstract

          Abstract

          Rossi and colleagues developed a miRNA-based shRNA platform combining different natural miRNA scaffolds into a chimeric cluster and substituting the natural miRNAs with shRNA-derived guide sequences. The system allows for easy, safe, efficient, and tunable modulation of multiple target genes for adoptive cell therapy without the need for gene editing.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia

          In a single-center phase 1-2a study, the anti-CD19 chimeric antigen receptor (CAR) T-cell therapy tisagenlecleucel produced high rates of complete remission and was associated with serious but mainly reversible toxic effects in children and young adults with relapsed or refractory B-cell acute lymphoblastic leukemia (ALL).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma

            Patients with diffuse large B-cell lymphoma that is refractory to primary and second-line therapies or that has relapsed after stem-cell transplantation have a poor prognosis. The chimeric antigen receptor (CAR) T-cell therapy tisagenlecleucel targets and eliminates CD19-expressing B cells and showed efficacy against B-cell lymphomas in a single-center, phase 2a study.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.

              Targeted gene regulation on a genome-wide scale is a powerful strategy for interrogating, perturbing, and engineering cellular systems. Here, we develop a method for controlling gene expression based on Cas9, an RNA-guided DNA endonuclease from a type II CRISPR system. We show that a catalytically dead Cas9 lacking endonuclease activity, when coexpressed with a guide RNA, generates a DNA recognition complex that can specifically interfere with transcriptional elongation, RNA polymerase binding, or transcription factor binding. This system, which we call CRISPR interference (CRISPRi), can efficiently repress expression of targeted genes in Escherichia coli, with no detectable off-target effects. CRISPRi can be used to repress multiple target genes simultaneously, and its effects are reversible. We also show evidence that the system can be adapted for gene repression in mammalian cells. This RNA-guided DNA recognition platform provides a simple approach for selectively perturbing gene expression on a genome-wide scale. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Ther Nucleic Acids
                Mol Ther Nucleic Acids
                Molecular Therapy. Nucleic Acids
                American Society of Gene & Cell Therapy
                2162-2531
                20 September 2023
                12 December 2023
                20 September 2023
                : 34
                : 102038
                Affiliations
                [1 ]Celyad Oncology, 1435 Mont-Saint-Guibert, Belgium
                Author notes
                []Corresponding author: Eytan Breman, PhD, Celyad Oncology, 1435 Mont-Saint-Guibert, Belgium. ebreman@ 123456celyad.com
                Article
                S2162-2531(23)00256-1 102038
                10.1016/j.omtn.2023.102038
                10548280
                37799328
                a36f9f27-fd03-495b-a83a-8e715f3deb36
                © 2023 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 20 June 2023
                : 15 September 2023
                Categories
                Original Article

                Molecular medicine
                mt: oligonucleotides: therapies and applications,mirna,shrna,multiplex,platform,gene expression modulation,knockdown,adoptive cell therapy,car,car t cell

                Comments

                Comment on this article