165
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Post Testicular Sperm Maturational Changes in the Bull: Important Role of the Epididymosomes and Prostasomes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          After spermatogenesis, testicular spermatozoa are not able to fertilize an oocyte, they must undergo sequential maturational processes. Part of these essential processes occurs during the transit of the spermatozoa through the male reproductive tract. Since the sperm become silent in terms of translation and transcription at the testicular level, all the maturational changes that take place on them are dependent on the interaction of spermatozoa with epididymal and accessory gland fluids. During the last decades, reproductive biotechnologies applied to bovine species have advanced significantly. The knowledge of the bull reproductive physiology is really important for the improvement of these techniques and the development of new ones. This paper focuses on the importance of the sperm interaction with the male reproductive fluids to acquire the fertilizing ability, with special attention to the role of the membranous vesicles present in those fluids and the recent mechanisms of protein acquisition during sperm maturation.

          Related collections

          Most cited references202

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanism of a reaction in vitro associated with delayed-type hypersensitivity.

          The cell type responsible for inhibition by antigen of migration in vitro of peritoneal exudate cells obtained from tuberculin-hypersensitive guinea pigs was studied. Exudate populations were separated into component cell types, the lymphocyte and the macrophage. Peritoneal lymphocytes from sensitive donors were the immunologically active cells in this system, the macrophages, being merely indicator cells which migrate. Sensitized peritoneal lymphocyte populations, upon interaction with specific antigen in vitro, elaborated into the medium a soluble material capable of inhibiting migration of normal exudate cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Docosahexaenoic acid: membrane properties of a unique fatty acid.

            Docosahexaenoic acid (DHA) with 22-carbons and 6 double bonds is the extreme example of an omega-3 polyunsaturated fatty acid (PUFA). DHA has strong medical implications since its dietary presence has been positively linked to the prevention of numerous human afflictions including cancer and heart disease. The PUFA, moreover, is essential to neurological function. It is remarkable that one simple molecule has been reported to affect so many seemingly unrelated biological processes. Although details of a molecular mode of action remain elusive, DHA must be acting at a fundamental level common to many tissues that is related to the high degree of conformational flexibility that the multiple double bonds have been identified to confer. One likely target for DHA action is at the cell membrane where the fatty acid is known to readily incorporate into membrane phospholipids. Once esterified into phospholipids DHA has been demonstrated to significantly alter many basic properties of membranes including acyl chain order and "fluidity", phase behavior, elastic compressibility, permeability, fusion, flip-flop and protein activity. It is concluded that DHA's interaction with other membrane lipids, particularly cholesterol, may play a prominent role in modulating the local structure and function of cell membranes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human sulfotransferases and their role in chemical metabolism.

              Sulfonation is an important reaction in the metabolism of numerous xenobiotics, drugs, and endogenous compounds. A supergene family of enzymes called sulfotransferases (SULTs) catalyze this reaction. In most cases, the addition of a sulfonate moiety to a compound increases its water solubility and decreases its biological activity. However, many of these enzymes are also capable of bioactivating procarcinogens to reactive electrophiles. In humans three SULT families, SULT1, SULT2, and SULT4, have been identified that contain at least thirteen distinct members. SULTs have a wide tissue distribution and act as a major detoxification enzyme system in adult and the developing human fetus. Nine crystal structures of human cytosolic SULTs have now been determined, and together with site-directed mutagenesis experiments and molecular modeling, we are now beginning to understand the factors that govern distinct but overlapping substrate specificities. These studies have also provided insight into the enzyme kinetics and inhibition characteristics of these enzymes. The regulation of human SULTs remains as one of the least explored areas of research in the field, though there have been some recent advances on the molecular transcription mechanism controlling the individual SULT promoters. Interindividual variation in sulfonation capacity may be important in determining an individual's response to xenobiotics, and recent studies have begun to suggest roles for SULT polymorphism in disease susceptibility. This review aims to provide a summary of our present understanding of the function of human cytosolic sulfotransferases.
                Bookmark

                Author and article information

                Journal
                Vet Med Int
                VMI
                Veterinary Medicine International
                SAGE-Hindawi Access to Research
                2042-0048
                2011
                13 October 2010
                : 2011
                : 757194
                Affiliations
                Département d'Obstétrique-Gynéologie, Faculté de Médecine, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ), Université Laval, 2705 Boulevard Laurier, T1-49, Quebec City, QC, Canada G1V 4G2
                Author notes

                Academic Editor: Ali Honaramooz

                Article
                10.4061/2011/757194
                2958493
                20981306
                a37e75e3-e09c-4e83-8c93-c1e726ae3806
                Copyright © 2011 Julieta Caballero et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 May 2010
                : 3 August 2010
                Categories
                Review Article

                Veterinary medicine
                Veterinary medicine

                Comments

                Comment on this article