12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pteroylpolyglutamate hydrolase from human jejunal brush borders. Purification and characterization.

      , ,
      The Journal of biological chemistry

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pteroylpolyglutamate hydrolase was solubilized with Triton X-100 from human jejunal mucosal brush borders and purified approximately 5,000-fold using organomercurial affinity chromatography, DEAE-cellulose chromatography, and gel filtration. The apparent molecular weight of the purified enzyme in the Triton micelle was estimated as 700,000 using Bio-Gel A-1.5m gel filtration. Sodium dodecyl sulfate/urea-polyacrylamide gel electrophoresis followed by Coomassie stain demonstrated two polypeptide bands at 145,000 and 115,000 daltons. The purified enzyme had an isoelectric point of 7.2, was maximally active at pH 5.5, and was stable above pH 6.5 and at temperatures up to 65 degrees C for at least 90 min. Human jejunal brush-border pteroylpolyglutamate hydrolase is an exopeptidase which liberated [14C]Glu as the sole labeled product of PteGlu2[14C]Glue (where PteGlun represents pteroylpolyglutamate), failed to liberate a radioactive product from PteGlu2[14C]GluLeu2, and released all possible labeled PteGlun products during incubation with Pte[14C]GluGlu6 with the accumulation of Pte[14C]Glu. PteGlu2, PteGlu3, and PteGlu7 were substrates, each with Km = 0.6 microM, whereas PteGlu was a weak inhibitor of the hydrolysis of PteGlu3 with Ki = 20 microM. Components of the pteroyl moiety, Glu, and short chain Glun in alpha or gamma linkages were not inhibitory. The enzyme was activated by Zn2+ or Co2+. The properties of brush-border pteroylpolyglutamate hydrolase are different from those described for the soluble intracellular pteroylpolyglutamate hydrolase in other species and in human mucosa, yet are consistent with previous data on the process of hydrolysis of PteGlun in the intact human intestine.

          Related collections

          Author and article information

          Journal
          J. Biol. Chem.
          The Journal of biological chemistry
          0021-9258
          0021-9258
          Jan 15 1986
          : 261
          : 2
          Article
          10.1016/S0021-9258(17)36185-9
          2867095
          a3c49ad3-6aa5-40a6-ad20-cc454b454d85
          History

          Comments

          Comment on this article