+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hearing Loss Prevents the Maturation of GABAergic Transmission in the Auditory Cortex

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Inhibitory neurotransmission is a critical determinant of neuronal network gain and dynamic range, suggesting that network properties are shaped by activity during development. A previous study demonstrated that sensorineural hearing loss (SNHL) in gerbils leads to smaller inhibitory potentials in L2/3 pyramidal neurons in the thalamorecipient auditory cortex, ACx. Here, we explored the mechanisms that account for proper maturation of γ-amino butyric acid (GABA)ergic transmission. SNHL was induced at postnatal day (P) 10, and whole-cell voltage-clamp recordings were obtained from layer 2/3 pyramidal neurons in thalamocortical slices at P16–19. SNHL led to an increase in the frequency of GABAzine-sensitive (antagonist) spontaneous (s) and miniature (m) inhibitory postsynaptic currents (IPSCs), accompanied by diminished amplitudes and longer durations. Consistent with this, the amplitudes of minimum-evoked IPSCs were also reduced while their durations were longer. The α1- and β2/3 subunit–specific agonists zolpidem and loreclezole increased control but not SNHL sIPSC durations. To test whether SNHL affected the maturation of GABAergic transmission, sIPSCs were recorded at P10. These sIPSCs resembled the long SNHL sIPSCs. Furthermore, zolpidem and loreclezole were ineffective in increasing their durations. Together, these data strongly suggest that the presynaptic release properties and expression of key postsynaptic GABA A receptor subunits are coregulated by hearing.

          Related collections

          Most cited references 84

          • Record: found
          • Abstract: found
          • Article: not found

          Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors.

          The proper functioning of the adult mammalian brain relies on the orchestrated regulation of neural activity by a diverse population of GABA (gamma-aminobutyric acid)-releasing neurons. Until recently, our appreciation of GABA-mediated inhibition focused predominantly on the GABA(A) (GABA type A) receptors located at synaptic contacts, which are activated in a transient or 'phasic' manner by GABA that is released from synaptic vesicles. However, there is growing evidence that low concentrations of ambient GABA can persistently activate certain subtypes of GABA(A) receptor, which are often remote from synapses, to generate a 'tonic' conductance. In this review, we consider the distinct roles of synaptic and extrasynaptic GABA receptor subtypes in the control of neuronal excitability.
            • Record: found
            • Abstract: found
            • Article: not found

            Inhibitory threshold for critical-period activation in primary visual cortex.

            Neuronal circuits across several systems display remarkable plasticity to sensory input during postnatal development. Experience-dependent refinements are often restricted to well-defined critical periods in early life, but how these are established remains mostly unknown. A representative example is the loss of responsiveness in neocortex to an eye deprived of vision. Here we show that the potential for plasticity is retained throughout life until an inhibitory threshold is attained. In mice of all ages lacking an isoform of GABA (gamma-aminobutyric acid) synthetic enzyme (GAD65), as well as in immature wild-type animals before the onset of their natural critical period, benzodiazepines selectively reduced a prolonged discharge phenotype to unmask plasticity. Enhancing GABA-mediated transmission early in life rendered mutant animals insensitive to monocular deprivation as adults, similar to normal wild-type mice. Short-term presynaptic dynamics reflected a synaptic reorganization in GAD65 knockout mice after chronic diazepam treatment. A threshold level of inhibition within the visual cortex may thus trigger, once in life, an experience-dependent critical period for circuit consolidation, which may otherwise lie dormant.
              • Record: found
              • Abstract: found
              • Article: not found

              Specific GABAA circuits for visual cortical plasticity.

              Weak inhibition within visual cortex early in life prevents experience-dependent plasticity. Loss of responsiveness to an eye deprived of vision can be initiated prematurely by enhancing gamma-aminobutyric acid (GABA)-mediated transmission with benzodiazepines. Here, we use a mouse "knockin" mutation to alpha subunits that renders individual GABA type A (GABA(A)) receptors insensitive to diazepam to show that a particular inhibitory network controls expression of the critical period. Only alpha1-containing circuits were found to drive cortical plasticity, whereas alpha2-enriched connections separately regulated neuronal firing. This dissociation carries implications for models of brain development and the safe design of benzodiazepines for use in infants.

                Author and article information

                Cereb Cortex
                Cerebral Cortex (New York, NY)
                Oxford University Press
                September 2008
                24 January 2008
                24 January 2008
                : 18
                : 9
                : 2098-2108
                [1 ]Center for Neural Science
                [2 ]Department of Biology, 4 Washington Place, New York University, New York, NY 10003, USA
                Author notes
                Address correspondence to Vibhakar C. Kotak, Ph.D. Email: kotak@
                © 2008 The Authors

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



                α1 and β2/3 subunits, auditory cortex, hearing impairment, development, gabaa receptor


                Comment on this article