17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MODIS Based Estimation of Forest Aboveground Biomass in China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha −1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y −1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y −1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y −1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO 2 concentration, N deposition, and growth of young forests.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Changes in forest biomass carbon storage in China between 1949 and 1998.

          The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Forest response to elevated CO2 is conserved across a broad range of productivity.

            Climate change predictions derived from coupled carbon-climate models are highly dependent on assumptions about feedbacks between the biosphere and atmosphere. One critical feedback occurs if C uptake by the biosphere increases in response to the fossil-fuel driven increase in atmospheric [CO(2)] ("CO(2) fertilization"), thereby slowing the rate of increase in atmospheric [CO(2)]. Carbon exchanges between the terrestrial biosphere and atmosphere are often first represented in models as net primary productivity (NPP). However, the contribution of CO(2) fertilization to the future global C cycle has been uncertain, especially in forest ecosystems that dominate global NPP, and models that include a feedback between terrestrial biosphere metabolism and atmospheric [CO(2)] are poorly constrained by experimental evidence. We analyzed the response of NPP to elevated CO(2) ( approximately 550 ppm) in four free-air CO(2) enrichment experiments in forest stands. We show that the response of forest NPP to elevated [CO(2)] is highly conserved across a broad range of productivity, with a stimulation at the median of 23 +/- 2%. At low leaf area indices, a large portion of the response was attributable to increased light absorption, but as leaf area indices increased, the response to elevated [CO(2)] was wholly caused by increased light-use efficiency. The surprising consistency of response across diverse sites provides a benchmark to evaluate predictions of ecosystem and global models and allows us now to focus on unresolved questions about carbon partitioning and retention, and spatial variation in NPP response caused by availability of other growth limiting resources.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The carbon balance of terrestrial ecosystems in China.

              Global terrestrial ecosystems absorbed carbon at a rate of 1-4 Pg yr(-1) during the 1980s and 1990s, offsetting 10-60 per cent of the fossil-fuel emissions. The regional patterns and causes of terrestrial carbon sources and sinks, however, remain uncertain. With increasing scientific and political interest in regional aspects of the global carbon cycle, there is a strong impetus to better understand the carbon balance of China. This is not only because China is the world's most populous country and the largest emitter of fossil-fuel CO(2) into the atmosphere, but also because it has experienced regionally distinct land-use histories and climate trends, which together control the carbon budget of its ecosystems. Here we analyse the current terrestrial carbon balance of China and its driving mechanisms during the 1980s and 1990s using three different methods: biomass and soil carbon inventories extrapolated by satellite greenness measurements, ecosystem models and atmospheric inversions. The three methods produce similar estimates of a net carbon sink in the range of 0.19-0.26 Pg carbon (PgC) per year, which is smaller than that in the conterminous United States but comparable to that in geographic Europe. We find that northeast China is a net source of CO(2) to the atmosphere owing to overharvesting and degradation of forests. By contrast, southern China accounts for more than 65 per cent of the carbon sink, which can be attributed to regional climate change, large-scale plantation programmes active since the 1980s and shrub recovery. Shrub recovery is identified as the most uncertain factor contributing to the carbon sink. Our data and model results together indicate that China's terrestrial ecosystems absorbed 28-37 per cent of its cumulated fossil carbon emissions during the 1980s and 1990s.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                26 June 2015
                2015
                : 10
                : 6
                : e0130143
                Affiliations
                [1 ]College of Urban and Environmental Sciences, Peking University, Beijing, China
                [2 ]Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
                Chinese Academy of Forestry, CHINA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SP. Analyzed the data: YZ. Wrote the paper: GY YZ YS TW ZZ SP.

                Article
                PONE-D-15-14657
                10.1371/journal.pone.0130143
                4482713
                26115195
                a4314157-1d95-457a-a57a-b3b2e6555cae
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 4 April 2015
                : 18 May 2015
                Page count
                Figures: 5, Tables: 2, Pages: 13
                Funding
                This study was supported by the National Natural Science Foundation of China (41125004), the Chinese Ministry of Environmental Protection Grant (201209031), and the National Youth Top-notch Talent Support Program in China. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article