5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Evaluating changes in radionuclide concentrations and groundwater levels before and after the cooling pond drawdown in the Chornobyl Nuclear Power Plant vicinity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the vicinity of the Chornobyl Nuclear Power Plant (ChNPP), the cooling pond (CP) was an artificially maintained reservoir with water levels regulated to 7 m above the Pripyat River until May 2014, when its pumps stopped operating, resulting in a natural drawdown. To investigate the surface-groundwater system before and after the drawdown, we evaluated the spatial and temporal changes in 90Sr and 137Cs radionuclide concentrations and groundwater levels in the shallow unconfined aquifer near the ChNPP from 2010 to 2019. Additionally, we compared water levels and 90Sr concentrations in Azbuchin Lake, wetlands inside the CP, and the Pripyat River. Using three-year averages before (2011-2013) and after (2017-2019) the drawdown period, we found that 90Sr concentrations significantly increased up to 102 kBq/m3 in the Pripyat River floodplain, north of ChNPP, exceeding the WHO drinking water guideline of 10 kBq/m3. In contrast 137Cs concentrations ranged consistently between 10 and 100 Bq/m3. The groundwater levels decreased over 50 cm at approximately 65 % of shallow monitoring wells and up to 6 m near the CP. The 90Sr concentration increases in some wells at the Pripyat River floodplain were associated with decreased dilution rates from the CP due to the reduced CP leakage, causing changes in groundwater flow direction and decreases in groundwater velocity. From the new finding of this study that the drawdown increased 90Sr concentrations near the floodplain, we estimated the 90Sr flux and contribution to the Pripyat River and the 90Sr contribution did not change significantly after the drawdown. However, radionuclides may accumulate more at the floodplain in the future; therefore, additional monitoring is required to verify 90Sr transport from areas of elevated concentrations and its impact on groundwater in the aquifer.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the hanford site, washington state.

          Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), (137)Cs, and (99)Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to approximately 10(4) CFU g(-1), but viable microorganisms were recovered from 11 of 16 samples, including several of the most radioactive ones (e.g., >10 microCi of (137)Cs/g). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples, but other phyla high in G+C content were also represented, including Rhodococcus and Nocardia. Two isolates from the second-most radioactive sample (>20 microCi of (137)Cs g(-1)) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20 kGy. Many of the gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that gram-positive bacteria, predominantly from phyla high in G+C content, are indigenous to Hanford vadose sediments and that some are effective at surviving the extreme physical and chemical stress associated with radioactive waste.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.

            We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Use of electrical imaging and distributed temperature sensing methods to characterize surface water-groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington

                Bookmark

                Author and article information

                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                May 2023
                May 2023
                : 872
                : 161997
                Article
                10.1016/j.scitotenv.2023.161997
                36739017
                a443b775-5048-48fd-a3a6-bd97a95f56f3
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article