19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      18F-Labeled, PSMA-Targeted Radiotracers: Leveraging the Advantages of Radiofluorination for Prostate Cancer Molecular Imaging

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prostate-specific membrane antigen (PSMA)-targeted PET imaging for prostate cancer with 68Ga-labeled compounds has rapidly become adopted as part of routine clinical care in many parts of the world. However, recent years have witnessed the start of a shift from 68Ga- to 18F-labeled PSMA-targeted compounds. The latter imaging agents have several key advantages, which may lay the groundwork for an even more widespread adoption into the clinic. First, facilitated delivery from distant suppliers expands the availability of PET radiopharmaceuticals in smaller hospitals operating a PET center but lacking the patient volume to justify an onsite 68Ge/ 68Ga generator. Thus, such an approach meets the increasing demand for PSMA-targeted PET imaging in areas with lower population density and may even lead to cost-savings compared to in-house production. Moreover, 18F-labeled radiotracers have a higher positron yield and lower positron energy, which in turn decreases image noise, improves contrast resolution, and maximizes the likelihood of detecting subtle lesions. In addition, the longer half-life of 110 min allows for improved delayed imaging protocols and flexibility in study design, which may further increase diagnostic accuracy. Moreover, such compounds can be distributed to sites which are not allowed to produce radiotracers on-site due to regulatory issues or to centers without access to a cyclotron. In light of these advantageous characteristics, 18F-labeled PSMA-targeted PET radiotracers may play an important role in both optimizing this transformative imaging modality and making it widely available. We have aimed to provide a concise overview of emerging 18F-labeled PSMA-targeted radiotracers undergoing active clinical development. Given the wide array of available radiotracers, comparative studies are needed to firmly establish the role of the available 18F-labeled compounds in the field of molecular PCa imaging, preferably in different clinical scenarios.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Epidemiology of ovarian cancer: a review

          Ovarian cancer (OC) is the seventh most commonly diagnosed cancer among women in the world and the tenth most common in China. Epithelial OC is the most predominant pathologic subtype, with five major histotypes that differ in origination, pathogenesis, molecular alterations, risk factors, and prognosis. Genetic susceptibility is manifested by rare inherited mutations with high to moderate penetrance. Genome-wide association studies have additionally identified 29 common susceptibility alleles for OC, including 14 subtype-specific alleles. Several reproductive and hormonal factors may lower risk, including parity, oral contraceptive use, and lactation, while others such as older age at menopause and hormone replacement therapy confer increased risks. These associations differ by histotype, especially for mucinous OC, likely reflecting differences in etiology. Endometrioid and clear cell OC share a similar, unique pattern of associations with increased risks among women with endometriosis and decreased risks associated with tubal ligation. OC risks associated with other gynecological conditions and procedures, such as hysterectomy, pelvic inflammatory disease, and polycystic ovarian syndrome, are less clear. Other possible risk factors include environmental and lifestyle factors such as asbestos and talc powder exposures, and cigarette smoking. The epidemiology provides clues on etiology, primary prevention, early detection, and possibly even therapeutic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            [ 177 Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study

            Progressive metastatic castration-resistant prostate cancer is a highly lethal disorder and new effective therapeutic agents that improve patient outcomes are urgently needed. Lutetium-177 [177Lu]-PSMA-617, a radiolabelled small molecule, binds with high affinity to prostate-specific membrane antigen (PSMA) enabling beta particle therapy targeted to metastatic castration-resistant prostate cancer. We aimed to investigate the safety, efficacy, and effect on quality of life of [177Lu]-PSMA-617 in men with metastatic castration-resistant prostate cancer who progressed after standard treatments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              German Multicenter Study Investigating 177Lu-PSMA-617 Radioligand Therapy in Advanced Prostate Cancer Patients.

              (177)Lu-labeled PSMA-617 is a promising new therapeutic agent for radioligand therapy (RLT) of patients with metastatic castration-resistant prostate cancer (mCRPC). Initiated by the German Society of Nuclear Medicine, a retrospective multicenter data analysis was started in 2015 to evaluate efficacy and safety of (177)Lu-PSMA-617 in a large cohort of patients.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2020
                1 January 2020
                : 10
                : 1
                : 1-16
                Affiliations
                [1 ]Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany.
                [2 ]The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
                [3 ]Department of Nuclear Medicine, University Hospital Würzburg, Germany.
                [4 ]Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
                [5 ]Department of Nuclear Medicine, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.
                [6 ]Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA.
                [7 ]Department of Nuclear Medicine, University Hospital Cologne, Germany.
                [8 ]Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan.
                [9 ]The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
                Author notes
                ✉ Corresponding author: Takahiro Higuchi, MD, PhD. University Hospital Würzburg, Department of Nuclear Medicine, Oberdürrbacherstr. 6. 97080 Würzburg. Phone: +49 931 201 35455; fax: +49 931 201 6 555 00; Email: thiguchi@ 123456me.com ; and Rudolf A. Werner, MD. Hannover Medical School, Department of Nuclear Medicine, Carl-Neuberg-Str. 1. 30625 Hannover. Phone: +49 1761 532-8822; werner.rudolf@ 123456mh-hannover.de

                * Equally contributed.

                Competing Interests: Martin G. Pomper is a coinventor on a patent covering [18F]DCFPyL and is entitled to a portion of any licensing fees and royalties generated by this technology. This arrangement has been reviewed and approved by the Johns Hopkins University in accordance with its conflict-of-interest policies. He has also received research funding from Progenics Phamaceuticals, the licensee of [18F]DCFPyL. Michael A. Gorin has served as a consultant to, and has received research funding from, Progenics Phamaceuticals. Steven P. Rowe has received research funding from Progenics Phamaceuticals.

                Article
                thnov10p0001
                10.7150/thno.37894
                6929634
                31903102
                a463a6f9-ab59-487d-8a94-b4e4d6fc508d
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 25 June 2019
                : 11 September 2019
                Categories
                Review

                Molecular medicine
                radiofluorine,prostate-specific membrane antigen,prostate cancer,18f,psma,pet,68ga,theranostics,radioligand therapy

                Comments

                Comment on this article