285
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MAPK Phosphatase AP2C3 Induces Ectopic Proliferation of Epidermal Cells Leading to Stomata Development in Arabidopsis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In plant post-embryonic epidermis mitogen-activated protein kinase (MAPK) signaling promotes differentiation of pavement cells and inhibits initiation of stomata. Stomata are cells specialized to modulate gas exchange and water loss. Arabidopsis MAPKs MPK3 and MPK6 are at the core of the signaling cascade; however, it is not well understood how the activity of these pleiotropic MAPKs is constrained spatially so that pavement cell differentiation is promoted only outside the stomata lineage. Here we identified a PP2C-type phosphatase termed AP2C3 (Arabidopsis protein phosphatase 2C) that is expressed distinctively during stomata development as well as interacts and inactivates MPK3, MPK4 and MPK6. AP2C3 co-localizes with MAPKs within the nucleus and this localization depends on its N-terminal extension. We show that other closely related phosphatases AP2C2 and AP2C4 are also MAPK phosphatases acting on MPK6, but have a distinct expression pattern from AP2C3. In accordance with this, only AP2C3 ectopic expression is able to stimulate cell proliferation leading to excess stomata development. This function of AP2C3 relies on the domains required for MAPK docking and intracellular localization. Concomitantly, the constitutive and inducible AP2C3 expression deregulates E2F-RB pathway, promotes the abundance and activity of CDKA, as well as changes of CDKB1;1 forms. We suggest that AP2C3 downregulates the MAPK signaling activity to help maintain the balance between differentiation of stomata and pavement cells.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation.

          C Marshall (1995)
          A number of different intracellular signaling pathways have been shown to be activated by receptor tyrosine kinases. These activation events include the phosphoinositide 3-kinase, 70 kDa S6 kinase, mitogen-activated protein kinase (MAPK), phospholipase C-gamma, and the Jak/STAT pathways. The precise role of each of these pathways in cell signaling remains to be resolved, but studies on the differentiation of mammalian PC12 cells in tissue culture and the genetics of cell fate determination in Drosophila and Caenorhabditis suggest that the extracellular signal-regulated kinase (ERK-regulated) MAPK pathway may be sufficient for these cellular responses. Experiments with PC12 cells also suggest that the duration of ERK activation is critical for cell signaling decisions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots.

            Local accumulation of the plant growth regulator auxin mediates pattern formation in Arabidopsis roots and influences outgrowth and development of lateral root- and shoot-derived primordia. However, it has remained unclear how auxin can simultaneously regulate patterning and organ outgrowth and how its distribution is stabilized in a primordium-specific manner. Here we show that five PIN genes collectively control auxin distribution to regulate cell division and cell expansion in the primary root. Furthermore, the joint action of these genes has an important role in pattern formation by focusing the auxin maximum and restricting the expression domain of PLETHORA (PLT) genes, major determinants for root stem cell specification. In turn, PLT genes are required for PIN gene transcription to stabilize the auxin maximum at the distal root tip. Our data reveal an interaction network of auxin transport facilitators and root fate determinants that control patterning and growth of the root primordium.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival.

              Mitogen-activated protein kinase (MAPK) pathways constitute a large modular network that regulates a variety of physiological processes, such as cell growth, differentiation, and apoptotic cell death. The function of the ERK pathway has been depicted as survival-promoting, in essence by opposing the proapoptotic activity of the stress-activated c-Jun NH(2)-terminal kinase (JNK)/p38 MAPK pathways. However, recently published work suggests that extracellular regulated kinase (ERK) pathway activity is suppressed by JNK/p38 kinases during apoptosis induction. In this review, we will summarize the current knowledge about JNK/p38-mediated mechanisms that negatively regulate the ERK pathway. In particular, we will focus on phosphatases (PP2A, MKPs) as inhibitors of ERK pathway activity in regulating apoptosis. A model proposed in this review places the negative regulation of the ERK pathway in a central position for the cellular decision-making process that determines whether cells will live or die in response to apoptosis-promoting signals. In addition, we will discuss the potential functional relevance of negative regulation of ERK pathway activity, for physiological and pathological conditions (e.g., cellular transformation).
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                23 December 2010
                : 5
                : 12
                : e15357
                Affiliations
                [1 ]Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
                [2 ]Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
                [3 ]Institute of Biotechnology, University of Vilnius, Vilnius, Lithuania
                [4 ]School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
                [5 ]Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
                [6 ]Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
                Iowa State University, United States of America
                Author notes

                Conceived and designed the experiments: IM AS LB. Performed the experiments: JU AS VK ZM ZA CC VU JB IM. Analyzed the data: AS VK ZM ZA VU IM. Contributed reagents/materials/analysis tools: JAHM LB. Wrote the paper: AS LB IM.

                Article
                PONE-D-10-00253
                10.1371/journal.pone.0015357
                3009721
                21203456
                a4a90733-41f5-4907-8649-fb5a7bbe66c1
                Umbrasaite et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 August 2010
                : 15 November 2010
                Page count
                Pages: 18
                Categories
                Research Article
                Biology
                Developmental Biology
                Organism Development
                Pattern Formation
                Cell Differentiation
                Cell Fate Determination
                Plant Growth and Development
                Stem Cells
                Model Organisms
                Plant and Algal Models
                Arabidopsis Thaliana
                Molecular Cell Biology
                Signal Transduction
                Mechanisms of Signal Transduction
                Signal Termination
                Signaling Cascades
                MAPK signaling cascades
                Stress Signaling Cascade
                Signaling in Selected Disciplines
                Plant Signaling
                Plant Cell Biology
                Plant Science
                Plants
                Leafs
                Plant Growth and Development

                Uncategorized
                Uncategorized

                Comments

                Comment on this article