16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      Are you tired of sifting through news that doesn't interest you?
      Personalize your Karger newsletter today and get only the news that matters to you!

      Sign up

      • Record: found
      • Abstract: found
      • Article: found

      The Diagnostic Accuracy of in vivo Confocal Scanning Laser Microscopy Compared to Dermoscopy of Benign and Malignant Melanocytic Lesions: A Prospective Study

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: The diagnosis of melanoma at an early, curable stage is an important challenge for clinicians. Confocal scanning laser microscopy (CSLM) is a high-resolution, noninvasive technology that may facilitate improved diagnostic accuracy over clinical examination. The aim of this study was to evaluate the diagnostic accuracy of CSLM compared to dermoscopy in a prospective examination of benign and malignant melanocytic lesions. Methods: 125 patients with suspicious pigmented lesions were prospectively recruited to undergo a clinical, dermoscopic and CSLM examination. A diagnosis was made preoperatively with each technique, and the lesion was then excised and diagnosed using histopathology. Results: 125 patients with 125 lesions were studied comprising 88 melanocytic nevi and 37 melanomas. Dermoscopy had a sensitivity of 89.2%, a specificity of 84.1%, a positive predictive value of 70.2% and a negative predictive value of 94.9%. CSLM was found to have a sensitivity of 97.3%, a specificity of 83.0%, a positive predictive value of 70.6% and a negative predictive value of 98.6%. No melanomas were misidentified when both techniques were used together. Conclusions: CSLM had a relatively higher sensitivity than dermoscopy; however, the specificity was similar with CSLM and dermoscopy. These results suggest that dermoscopy and CSLM are complementary.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Dermoscopy of pigmented skin lesions: results of a consensus meeting via the Internet.

          There is a need for better standardization of the dermoscopic terminology in assessing pigmented skin lesions. The virtual Consensus Net Meeting on Dermoscopy was organized to investigate reproducibility and validity of the various features and diagnostic algorithms. Dermoscopic images of 108 lesions were evaluated via the Internet by 40 experienced dermoscopists using a 2-step diagnostic procedure. The first-step algorithm distinguished melanocytic versus nonmelanocytic lesions. The second step in the diagnostic procedure used 4 algorithms (pattern analysis, ABCD rule, Menzies method, and 7-point checklist) to distinguish melanoma versus benign melanocytic lesions. kappa Values, log odds ratios, sensitivity, specificity, and positive likelihood ratios were estimated for all diagnostic algorithms and dermoscopic features. Interobserver agreement was fair to good for all diagnostic methods, but it was poor for the majority of dermoscopic criteria. Intraobserver agreement was good to excellent for all algorithms and features considered. Pattern analysis allowed the best diagnostic performance (positive likelihood ratio: 5.1), whereas alternative algorithms revealed comparable sensitivity but less specificity. Interobserver agreement on management decisions made by dermoscopy was fairly good (mean kappa value: 0.53). The virtual Consensus Net Meeting on Dermoscopy represents a valid tool for better standardization of the dermoscopic terminology and, moreover, opens up a new territory for diagnosing and managing pigmented skin lesions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology.

            In 1995, we reported the construction of a video-rate scanning laser confocal microscope for imaging human skin in vivo. Since then, we have improved the resolution, contrast, depth of imaging, and field of view. Confocal images of human skin are shown with experimentally measured lateral resolution 0.5-1.0 microm and axial resolution (section thickness) 3-5 microm at near-infrared wavelengths of 830 nm and 1064 nm; this resolution compares well to that of histology which is based on typically 5 microm thin sections. Imaging is possible to maximum depth of 350 microm over field of view of 160-800 microm. A mechanical skin-contact device was developed to laterally stabilize the imaging site to within +/- 25 microm in the presence of subject motion. Based on these results, we built a small, portable, and robust confocal microscope that is capable of imaging normal and abnormal skin morphology and dynamic processes in vivo, in both laboratory and clinical settings. We report advances in confocal microscope instrumentation and methods, an optimum range of parameters, improved images of normal human skin, and comparison of confocal images with histology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In Vivo Confocal Scanning Laser Microscopy of Human Skin: Melanin Provides Strong Contrast

              Confocal scanning laser microscopy of live human skin was performed to investigate the correlation of in vivo cellular and morphologic features to histology, the effect of wavelength on imaging, and the role of melanin as a contrast agent. We built a video-rate confocal scanning laser microscope for in vivo imaging of human skin. Using a 100 x microscope objective, we imaged high-contrast optical "sections" of normal skin, vitiliginous skin, and a compound nevus. In vivo "confocal histology" correlated well with conventional histology. The maximum imaging depth increased with wavelength: the epidermis was imaged with visible 400-700-nm wavelengths; the superficial papillary dermis and blood cells (erythrocytes and leukocytes) in the deeper capillaries were imaged with the near infrared 800-900-nm wavelengths. For confocal reflectance imaging, melanin provided strong contrast by increased backscattering of light such that the cytoplasm in heavily pigmented cells imaged brightly. In vivo confocal microscopy potentially offers dermatologists a diagnostic tool that is instant and entirely non-invasive compared to conventional histopathology.
                Bookmark

                Author and article information

                Journal
                DRM
                Dermatology
                10.1159/issn.1018-8665
                Dermatology
                S. Karger AG
                1018-8665
                1421-9832
                2007
                October 2007
                18 October 2007
                : 215
                : 4
                : 365-372
                Affiliations
                aDivision of Dermatology, Department of Medicine, bDivision of Plastic and Reconstructive Surgery, Department of Surgery, and cDepartment of Pathology, Dalhousie University, Halifax, N.S., Canada
                Article
                109087 Dermatology 2007;215:365–372
                10.1159/000109087
                17912001
                a4d8851f-1f3d-40e7-99db-257bca5cfb29
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 12 September 2007
                : 13 September 2007
                Page count
                Figures: 1, Tables: 1, References: 40, Pages: 8
                Categories
                Clinical and Laboratory Investigations

                Oncology & Radiotherapy,Pathology,Surgery,Dermatology,Pharmacology & Pharmaceutical medicine
                Melanoma,Confocal scanning laser microscopy, diagnostic accuracy,Dermoscopy

                Comments

                Comment on this article