5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dispersal ecology of the endangered woodland lichen Lobaria pulmonaria in managed hemiboreal forest landscape

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Book: not found

          Introduction to Conservation Genetics

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantifying dispersal and establishment limitation in a population of an epiphytic lichen.

            Dispersal is a process critical for the dynamics and persistence of metapopulations, but it is difficult to quantify. It has been suggested that the old-forest lichen Lobaria pulmonaria is limited by insufficient dispersal ability. We analyzed 240 DNA extracts derived from snow samples by a L. pulmonaria-specific real-time PCR (polymerase chain reaction) assay of the ITS (internal transcribed spacer) region allowing for the discrimination among propagules originating from a single, isolated source tree or propagules originating from other locations. Samples that were detected as positives by real-time PCR were additionally genotyped for five L. pulmonaria microsatellite loci. Both molecular approaches demonstrated substantial dispersal from other than local sources. In a landscape approach, we additionally analyzed 240 snow samples with real-time PCR of ITS and detected propagules not only in forests where L. pulmonaria was present, but also in large unforested pasture areas and in forest patches where L. pulmonaria was not found. Monitoring of soredia of L. pulmonaria transplanted to maple bark after two vegetation periods showed high variance in growth among forest stands, but no significant differences among different transplantation treatments. Hence, it is probably not dispersal limitation that hinders colonization in the old-forest lichen L. pulmonaria, but ecological constraints at the stand level that can result in establishment limitation. Our study exemplifies that care has to be taken to adequately separate the effects of dispersal limitation from a limitation of establishment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Growth and ecophysiological acclimation of the foliose lichen Lobaria pulmonaria in forests with contrasting light climates.

              This study aims to assess biomass and area growth of 600 thalli of the old forest lichen, Lobaria pulmonaria, transplanted to three successional boreal forest stands with (1) natural rainfall regime, (2) additional moistening during dry days, and (3) additional moistening with added nutrients. Mean biomass growth during 100 days varied from 8.3% in the dark young spruce forest to 23.1% in the clear-cut area, with the old forest in between (16.0%). Additional moistening did not enhance lichen growth, probably because the transplantation period was wet. Nutrient additions slightly increased area growth compared to artificial water additions only. Growth was determined by a combination of external (forest stand, site factors) and internal factors (chlorophyll content, biomass per area). Transplants acclimated to high light by increasing thickness and chlorophyll a/b-ratio. Some visible bleaching and a strong positive correlation between chlorophyll content per area and lichen growth in clear-cuts suggest some high light-induced chlorophyll degradation. We believe that biomass growth and natural occurrence of L. pulmonaria is controlled by a delicate balance between light availability and desiccation risk, and that the species is confined to old forests due to a physiological trade-off between growth potential and fatal desiccation damage, both of which increase with increasing light. The discrepancy between potential and realized ecological niches is probably caused by a long-term risk to be killed in open habitats by high light during long periods with no rain.
                Bookmark

                Author and article information

                Journal
                Biodiversity and Conservation
                Biodivers Conserv
                Springer Nature
                0960-3115
                1572-9710
                July 2011
                April 26 2011
                : 20
                : 8
                : 1803-1819
                Article
                10.1007/s10531-011-0062-8
                a4ffbdf1-fd4c-4dda-8301-69623c62db47
                © 2011
                History

                Comments

                Comment on this article