0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phylogenetic studies uncover a predominantly African lineage in a widely distributed lichen-forming fungal species

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A number of lichen-forming fungal species are widely distributed. Here, we investigate biogeographic patterns in a widely distributed isidiate taxon – Parmelinella wallichiana – using molecular sequence data. Our results revealed that Parmelinella wallichina, as currently circumscribed, is not monophyletic but falls into four clades, two of them represented by a sample only. A third clade, occurring in Africa and southern India is described as a new species, Parmelinella schimperiana Kirika & Divakar, sp. nov. Our study adds a further example of previously overlooked, geographically distinct, lineages that were discovered using molecular data.

          Related collections

          Most cited references 45

          • Record: found
          • Abstract: found
          • Article: not found

          Cryptic species as a window on diversity and conservation.

          The taxonomic challenge posed by cryptic species (two or more distinct species classified as a single species) has been recognized for nearly 300 years, but the advent of relatively inexpensive and rapid DNA sequencing has given biologists a new tool for detecting and differentiating morphologically similar species. Here, we synthesize the literature on cryptic and sibling species and discuss trends in their discovery. However, a lack of systematic studies leaves many questions open, such as whether cryptic species are more common in particular habitats, latitudes or taxonomic groups. The discovery of cryptic species is likely to be non-random with regard to taxon and biome and, hence, could have profound implications for evolutionary theory, biogeography and conservation planning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora.

            To critically examine the relationship between species recognized by phylogenetic and reproductive compatibility criteria, we applied phylogenetic species recognition (PSR) to the fungus in which biological species recognition (BSR) has been most comprehensively applied, the well-studied genus Neurospora. Four independent anonymous nuclear loci were characterized and sequenced from 147 individuals that were representative of all described outbreeding species of Neurospora. We developed a consensus-tree approach that identified monophyletic genealogical groups that were concordantly supported by the majority of the loci, or were well supported by at least one locus but not contradicted by any other locus. We recognized a total of eight phylogenetic species, five of which corresponded with the five traditional biological species, and three of which were newly discovered. Not only were phylogenetic criteria superior to traditional reproductive compatibility criteria in revealing the full species diversity of Neurospora, but also significant phylogenetic subdivisions were detected within some species. Despite previous suggestions of hybridization between N. crassa and N. intermedia in nature, and the fact that several putative hybrid individuals were included in this study, no molecular evidence in support of recent interspecific gene flow or the existence of true hybrids was observed. The sequence data from the four loci were combined and used to clarify how the species discovered by PSR were related. Although species-level clades were strongly supported, the phylogenetic relationships among species remained difficult to resolve, perhaps due to conflicting signals resulting from differential lineage sorting.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus.

              Microbes and other organisms smaller than one to a few millimeters in size are hypothesized to have global populations, in contrast to the geographically restricted ranges of larger organisms. However, fungi, which routinely have reproductive propagules no larger than 10 micrometers, challenge the generality of this hypothesis because recent studies have shown that globally distributed morphological species embrace two or more geographically restricted phylogenetic species. We used the concordance of gene genealogies to recognize phylogenetic species in the globally distributed opportunistic human pathogenic fungus, Aspergillus fumigatus. Based on DNA sequence data of five loci for each of 63 individuals collected from five continents, we have delineated two phylogenetic species in this single morphological species. Unlike all other fungi examined to date, both genetically isolated groups showed a global distribution with no evidence of a correlation between genotype and geographic location. Sexual reproduction has never been observed in A. fumigatus, but when the same data were used to explore the association of alleles at the five loci for one of the phylogenetic species, evidence was found to support recombination. The discovery of a cryptic species is medically relevant because different species are likely to differ in virulence or drug resistance. The discovery of a globally distributed A. fumigatus species clade highlights the need for ecological studies of the fungus to either document global dispersal or propose alternative mechanisms by which it persists as single, global phylogenetic population.
                Bookmark

                Author and article information

                Journal
                MycoKeys
                MC
                Pensoft Publishers
                1314-4049
                1314-4057
                June 15 2016
                June 15 2016
                : 14
                : 1-16
                Article
                10.3897/mycokeys.14.8971
                © 2016
                Product

                Comments

                Comment on this article