4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Appeals that matter or not on a moratorium on the deployment of the fifth generation, 5G, for microwave radiation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Radiofrequency (RF) radiation in the frequency range of 30 kHz-300 GHz is classified as a ‘possible’ human carcinogen, Group 2B, by the International Agency for Research on Cancer (IARC) since 2011. The evidence has since then been strengthened by further research; thus, RF radiation may now be classified as a human carcinogen, Group 1. In spite of this, microwave radiations are expanding with increasing personal and ambient exposure. One contributing factor is that the majority of countries rely on guidelines formulated by the International Commission on Non-Ionizing Radiation Protection (ICNIRP), a private German non-governmental organization. ICNIRP relies on the evaluation only of thermal (heating) effects from RF radiation, thereby excluding a large body of published science demonstrating the detrimental effects caused by non-thermal radiation. The fifth generation, 5G, for microwave radiation is about to be implemented worldwide in spite of no comprehensive investigations of the potential risks to human health and the environment. In an appeal sent to the EU in September, 2017 currently >260 scientists and medical doctors requested for a moratorium on the deployment of 5G until the health risks associated with this new technology have been fully investigated by industry-independent scientists. The appeal and four rebuttals to the EU over a period of >2 years, have not achieved any positive response from the EU to date. Unfortunately, decision makers seem to be uninformed or even misinformed about the risks. EU officials rely on the opinions of individuals within the ICNIRP and the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), most of whom have ties to the industry. They seem to dominate evaluating bodies and refute risks. It is important that these circumstances are described. In this article, the warnings on the health risks associated with RF presented in the 5G appeal and the letters to the EU Health Commissioner since September, 2017 and the authors' rebuttals are summarized. The responses from the EU seem to have thus far prioritized industry profits to the detriment of human health and the environment.

          Related collections

          Most cited references 29

          • Record: found
          • Abstract: not found
          • Article: not found

          Carcinogenicity of radiofrequency electromagnetic fields.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation.

            This review aims to cover experimental data on oxidative effects of low-intensity radiofrequency radiation (RFR) in living cells. Analysis of the currently available peer-reviewed scientific literature reveals molecular effects induced by low-intensity RFR in living cells; this includes significant activation of key pathways generating reactive oxygen species (ROS), activation of peroxidation, oxidative damage of DNA and changes in the activity of antioxidant enzymes. It indicates that among 100 currently available peer-reviewed studies dealing with oxidative effects of low-intensity RFR, in general, 93 confirmed that RFR induces oxidative effects in biological systems. A wide pathogenic potential of the induced ROS and their involvement in cell signaling pathways explains a range of biological/health effects of low-intensity RFR, which include both cancer and non-cancer pathologies. In conclusion, our analysis demonstrates that low-intensity RFR is an expressive oxidative agent for living cells with a high pathogenic potential and that the oxidative stress induced by RFR exposure should be recognized as one of the primary mechanisms of the biological activity of this kind of radiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mobile phone and cordless phone use and the risk for glioma - Analysis of pooled case-control studies in Sweden, 1997-2003 and 2007-2009.

              We made a pooled analysis of two case-control studies on malignant brain tumours with patients diagnosed during 1997-2003 and 2007-2009. They were aged 20-80 years and 18-75 years, respectively, at the time of diagnosis. Only cases with histopathological verification of the tumour were included. Population-based controls, matched on age and gender, were used. Exposures were assessed by questionnaire. The whole reference group was used in the unconditional regression analysis adjusted for gender, age, year of diagnosis, and socio-economic index. In total, 1498 (89%) cases and 3530 (87%) controls participated. Mobile phone use increased the risk of glioma, OR=1.3, 95% CI=1.1-1.6 overall, increasing to OR=3.0, 95% CI=1.7-5.2 in the >25 year latency group. Use of cordless phones increased the risk to OR=1.4, 95% CI=1.1-1.7, with highest risk in the >15-20 years latency group yielding OR=1.7, 95% CI=1.1-2.5. The OR increased statistically significant both per 100h of cumulative use, and per year of latency for mobile and cordless phone use. Highest ORs overall were found for ipsilateral mobile or cordless phone use, OR=1.8, 95% CI=1.4-2.2 and OR=1.7, 95% CI=1.3-2.1, respectively. The highest risk was found for glioma in the temporal lobe. First use of mobile or cordless phone before the age of 20 gave higher OR for glioma than in later age groups.
                Bookmark

                Author and article information

                Journal
                Mol Clin Oncol
                Mol Clin Oncol
                MCO
                Molecular and Clinical Oncology
                D.A. Spandidos
                2049-9450
                2049-9469
                March 2020
                22 January 2020
                22 January 2020
                : 12
                : 3
                : 247-257
                Affiliations
                [1 ]Department of Oncology, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
                [2 ]Faculty of Education and Welfare Studies, Åbo Akademi University, 65100 Vasa, Finland
                Author notes
                Correspondence to: Professor Lennart Hardell,

                3 Present address: The Environment and Cancer Research Foundation, Studievägen 35, SE-702 17, Örebro, Sweden lennart.hardell@ 123456environmentandcancer.com

                4 Present address: Fredsgatan 16 A 35, 65100 Vasa, Finland

                Article
                MCO-0-0-1984
                10.3892/mco.2020.1984
                7016513
                Copyright: © Hardell et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                Categories
                Articles

                Comments

                Comment on this article