46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Scale Metabolic Modeling Elucidates the Role of Proliferative Adaptation in Causing the Warburg Effect

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Warburg effect - a classical hallmark of cancer metabolism - is a counter-intuitive phenomenon in which rapidly proliferating cancer cells resort to inefficient ATP production via glycolysis leading to lactate secretion, instead of relying primarily on more efficient energy production through mitochondrial oxidative phosphorylation, as most normal cells do. The causes for the Warburg effect have remained a subject of considerable controversy since its discovery over 80 years ago, with several competing hypotheses. Here, utilizing a genome-scale human metabolic network model accounting for stoichiometric and enzyme solvent capacity considerations, we show that the Warburg effect is a direct consequence of the metabolic adaptation of cancer cells to increase biomass production rate. The analysis is shown to accurately capture a three phase metabolic behavior that is observed experimentally during oncogenic progression, as well as a prominent characteristic of cancer cells involving their preference for glutamine uptake over other amino acids.

          Author Summary

          Cancer cells, as opposed to normal cells, produce a substantial amount of energy inefficiently via aerobic glycolysis, even in the presence of sufficient oxygen to support mitochondrial respiration. Despite the fact that this phenomenon, called the Warburg effect, has already been discovered back in 1924, its causes remain poorly understood. Here we utilize a genome-scale human metabolic network model and show that by accounting for cellular capacity for metabolic enzymes, the Warburg effect is a direct consequence of cancer cells' adaptation to fast proliferation. We demonstrate that our model accurately captures several metabolic phenotypes observed experimentally during cancer development, as well as the preference of cancer cells to glutamine uptake over other amino acids.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          On the origin of cancer cells.

          O WARBURG (1956)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information

            An updated genome-scale reconstruction of the metabolic network in Escherichia coli K-12 MG1655 is presented. This updated metabolic reconstruction includes: (1) an alignment with the latest genome annotation and the metabolic content of EcoCyc leading to the inclusion of the activities of 1260 ORFs, (2) characterization and quantification of the biomass components and maintenance requirements associated with growth of E. coli and (3) thermodynamic information for the included chemical reactions. The conversion of this metabolic network reconstruction into an in silico model is detailed. A new step in the metabolic reconstruction process, termed thermodynamic consistency analysis, is introduced, in which reactions were checked for consistency with thermodynamic reversibility estimates. Applications demonstrating the capabilities of the genome-scale metabolic model to predict high-throughput experimental growth and gene deletion phenotypic screens are presented. The increased scope and computational capability using this new reconstruction is expected to broaden the spectrum of both basic biology and applied systems biology studies of E. coli metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effects of alternate optimal solutions in constraint-based genome-scale metabolic models.

              Genome-scale constraint-based models of several organisms have now been constructed and are being used for model driven research. A key issue that may arise in the use of such models is the existence of alternate optimal solutions wherein the same maximal objective (e.g., growth rate) can be achieved through different flux distributions. Herein, we investigate the effects that alternate optimal solutions may have on the predicted range of flux values calculated using currently practiced linear (LP) and quadratic programming (QP) methods. An efficient LP-based strategy is described to calculate the range of flux variability that can be present in order to achieve optimal as well as suboptimal objective states. Sample results are provided for growth predictions of E. coli using glucose, acetate, and lactate as carbon substrates. These results demonstrate the extent of flux variability to be highly dependent on environmental conditions and network composition. In addition we examined the impact of alternate optima for growth under gene knockout conditions as calculated using QP-based methods. It was observed that calculations using QP-based methods can show significant variation in growth rate if the flux variability among alternate optima is high. The underlying biological significance and general source of such flux variability is further investigated through the identification of redundancies in the network (equivalent reaction sets) that lead to alternate solutions. Collectively, these results illustrate the variability inherent in metabolic flux distributions and the possible implications of this heterogeneity for constraint-based modeling approaches. These methods also provide an efficient and robust method to calculate the range of flux distributions that can be derived from quantitative fermentation data.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                March 2011
                March 2011
                10 March 2011
                : 7
                : 3
                : e1002018
                Affiliations
                [1 ]Computer Science Department, Technion - Israel Institute of Technology, Haifa, Israel
                [2 ]The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
                [3 ]The Beatson Institute for Cancer Research, Glasgow, United Kingdom
                [4 ]The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
                University of Virginia, United States of America
                Author notes

                Conceived and designed the experiments: ER TS TB. Performed the experiments: TB. Analyzed the data: ER TS TB. Contributed reagents/materials/analysis tools: ER TS. Wrote the paper: ER TS TB. Analyzed the results: ER TS TB RS EG.

                Article
                PCOMPBIOL-D-10-00163
                10.1371/journal.pcbi.1002018
                3053319
                21423717
                a5351196-71ba-4138-8dd8-024b01fbaaeb
                Shlomi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 October 2010
                : 28 January 2011
                Page count
                Pages: 8
                Categories
                Research Article
                Biology
                Computational Biology
                Metabolic Networks
                Systems Biology
                Molecular Cell Biology
                Cell Growth
                Systems Biology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article