7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Distinct Symptom-Specific Treatment Targets for Circuit-Based Neuromodulation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial.

          We tested whether transcranial magnetic stimulation (TMS) over the left dorsolateral prefrontal cortex (DLPFC) is effective and safe in the acute treatment of major depression. In a double-blind, multisite study, 301 medication-free patients with major depression who had not benefited from prior treatment were randomized to active (n = 155) or sham TMS (n = 146) conditions. Sessions were conducted five times per week with TMS at 10 pulses/sec, 120% of motor threshold, 3000 pulses/session, for 4-6 weeks. Primary outcome was the symptom score change as assessed at week 4 with the Montgomery-Asberg Depression Rating Scale (MADRS). Secondary outcomes included changes on the 17- and 24-item Hamilton Depression Rating Scale (HAMD) and response and remission rates with the MADRS and HAMD. Active TMS was significantly superior to sham TMS on the MADRS at week 4 (with a post hoc correction for inequality in symptom severity between groups at baseline), as well as on the HAMD17 and HAMD24 scales at weeks 4 and 6. Response rates were significantly higher with active TMS on all three scales at weeks 4 and 6. Remission rates were approximately twofold higher with active TMS at week 6 and significant on the MADRS and HAMD24 scales (but not the HAMD17 scale). Active TMS was well tolerated with a low dropout rate for adverse events (4.5%) that were generally mild and limited to transient scalp discomfort or pain. Transcranial magnetic stimulation was effective in treating major depression with minimal side effects reported. It offers clinicians a novel alternative for the treatment of this disorder.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate.

            Transcranial magnetic stimulation (TMS) to the left dorsolateral prefrontal cortex (DLPFC) is used clinically for the treatment of depression. However, the antidepressant mechanism remains unknown and its therapeutic efficacy remains limited. Recent data suggest that some left DLPFC targets are more effective than others; however, the reasons for this heterogeneity and how to capitalize on this information remain unclear. Intrinsic (resting state) functional magnetic resonance imaging data from 98 normal subjects were used to compute functional connectivity with various left DLPFC TMS targets employed in the literature. Differences in functional connectivity related to differences in previously reported clinical efficacy were identified. This information was translated into a connectivity-based targeting strategy to identify optimized left DLPFC TMS coordinates. Results in normal subjects were tested for reproducibility in an independent cohort of 13 patients with depression. Differences in functional connectivity were related to previously reported differences in clinical efficacy across a distributed set of cortical and limbic regions. Dorsolateral prefrontal cortex TMS sites with better clinical efficacy were more negatively correlated (anticorrelated) with the subgenual cingulate. Optimum connectivity-based stimulation coordinates were identified in Brodmann area 46. Results were reproducible in patients with depression. Reported antidepressant efficacy of different left DLPFC TMS sites is related to the anticorrelation of each site with the subgenual cingulate, potentially lending insight into the antidepressant mechanism of TMS and suggesting a role for intrinsically anticorrelated networks in depression. These results can be translated into a connectivity-based targeting strategy for focal brain stimulation that might be used to optimize clinical response. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Connectivity Predicts deep brain stimulation outcome in Parkinson disease.

              The benefit of deep brain stimulation (DBS) for Parkinson disease (PD) may depend on connectivity between the stimulation site and other brain regions, but which regions and whether connectivity can predict outcome in patients remain unknown. Here, we identify the structural and functional connectivity profile of effective DBS to the subthalamic nucleus (STN) and test its ability to predict outcome in an independent cohort.
                Bookmark

                Author and article information

                Journal
                American Journal of Psychiatry
                AJP
                American Psychiatric Association Publishing
                0002-953X
                1535-7228
                May 01 2020
                May 01 2020
                : 177
                : 5
                : 435-446
                Affiliations
                [1 ]Department of Psychiatry (Siddiqi) and Department of Neurology (Pascual-Leone, Fox), Harvard Medical School, Boston; Berenson-Allen Center for Noninvasive Brain Stimulation (Siddiqi, Cooke, Fox), and Cognitive Neurology Unit, Department of Neurology (Siddiqi), Beth Israel Deaconess Medical Center, Boston; Division of Neurotherapeutics, McLean Hospital, Belmont, Mass. (Siddiqi); Department of Psychiatry, Washington University School of Medicine, St. Louis (Siddiqi); Center for Neuroscience and...
                Article
                10.1176/appi.ajp.2019.19090915
                32160765
                a53edf74-33ba-46d4-b237-00cf22e18e06
                © 2020
                History

                Comments

                Comment on this article