15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nanoparticle-Enhanced Radiotherapy to Trigger Robust Cancer Immunotherapy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          The blockade of immune checkpoints in cancer immunotherapy.

          Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer immunotherapy: moving beyond current vaccines.

            Great progress has been made in the field of tumor immunology in the past decade, but optimism about the clinical application of currently available cancer vaccine approaches is based more on surrogate endpoints than on clinical tumor regression. In our cancer vaccine trials of 440 patients, the objective response rate was low (2.6%), and comparable to the results obtained by others. We consider here results in cancer vaccine trials and highlight alternate strategies that mediate cancer regression in preclinical and clinical models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thermal ablation of tumours: biological mechanisms and advances in therapy.

              Minimally invasive thermal ablation of tumours has become common since the advent of modern imaging. From the ablation of small, unresectable tumours to experimental therapies, percutaneous radiofrequency ablation, microwave ablation, cryoablation and irreversible electroporation have an increasing role in the treatment of solid neoplasms. This Opinion article examines the mechanisms of tumour cell death that are induced by the most common thermoablative techniques and discusses the rapidly developing areas of research in the field, including combinatorial ablation and immunotherapy, synergy with conventional chemotherapy and radiation, and the development of a new ablation modality in irreversible electroporation.
                Bookmark

                Author and article information

                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                09359648
                March 2019
                March 2019
                January 21 2019
                : 31
                : 10
                : 1802228
                Affiliations
                [1 ]Institute of Functional Nano and Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices; Soochow University; Suzhou Jiangsu 215123 China
                Article
                10.1002/adma.201802228
                30663118
                a54e9884-b51a-4832-9955-676b0178f211
                © 2019

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article