5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interaction between PHB2 and Enterovirus A71 VP1 Induces Autophagy and Affects EV-A71 Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Enterovirus A71 (EV-A71) is a major pathogen that causes severe and fatal cases of hand-foot-and-mouth disease (HFMD). HFMD caused by EV-A71 seriously endangers children’s health. Although autophagy is an important antiviral defense mechanism, some viruses have evolved strategies to utilize autophagy to promote self-replication. EV-A71 can utilize autophagy vesicles as replication scaffolds, indicating that EV-A71 infection is closely related to its autophagy induction mechanism. VP1, a structural protein of EV-A71, has been reported to induce autophagy, but the underlying mechanism is still unclear. In this study, we found that the C-terminus (aa 251–297) of VP1 induces autophagy. Mass spectrometry analysis suggested that prohibitin 2 (PHB2) interacts with the C-terminus of the EV-A71 VP1 protein, and this was further verified by coimmunoprecipitation assays. After PHB2 knockdown, EV-A71 replication, viral particle release, and viral protein synthesis were reduced, and autophagy was inhibited. The results suggest that PHB2 interaction with VP1 is essential for induction of autophagy and the infectivity of EV-A71. Furthermore, we confirmed that EV-A71 induced complete autophagy that required autolysosomal acidification, thus affecting EV-A71 infection. In summary, this study revealed that the host protein PHB2 is involved in an autophagy mechanism during EV-A71 infection.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase.

          A group of phosphoinositide 3-kinase (PI3K) inhibitors, such as 3-methyladenine (3-MA) and wortmannin, have been widely used as autophagy inhibitors based on their inhibitory effect on class III PI3K activity, which is known to be essential for induction of autophagy. In this study, we systematically examined and compared the effects of these two inhibitors on autophagy under both nutrient-rich and deprivation conditions. To our surprise, 3-MA is found to promote autophagy flux when treated under nutrient-rich conditions with a prolonged period of treatment, whereas it is still capable of suppressing starvation-induced autophagy. We first observed that there are marked increases of the autophagic markers in cells treated with 3-MA in full medium for a prolonged period of time (up to 9 h). Second, we provide convincing evidence that the increase of autophagic markers is the result of enhanced autophagic flux, not due to suppression of maturation of autophagosomes or lysosomal function. More importantly, we found that the autophagy promotion activity of 3-MA is due to its differential temporal effects on class I and class III PI3K; 3-MA blocks class I PI3K persistently, whereas its suppressive effect on class III PI3K is transient. Because 3-MA has been widely used as an autophagy inhibitor in the literature, understanding the dual role of 3-MA in autophagy thus suggests that caution should be exercised in the application of 3-MA in autophagy study.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor.

            The removal of unwanted or damaged mitochondria by autophagy, a process called mitophagy, is essential for key events in development, cellular homeostasis, tumor suppression, and prevention of neurodegeneration and aging. However, the precise mechanisms of mitophagy remain uncertain. Here, we identify the inner mitochondrial membrane protein, prohibitin 2 (PHB2), as a crucial mitophagy receptor involved in targeting mitochondria for autophagic degradation. PHB2 binds the autophagosomal membrane-associated protein LC3 through an LC3-interaction region (LIR) domain upon mitochondrial depolarization and proteasome-dependent outer membrane rupture. PHB2 is required for Parkin-induced mitophagy in mammalian cells and for the clearance of paternal mitochondria after embryonic fertilization in C. elegans. Our findings pinpoint a conserved mechanism of eukaryotic mitophagy and demonstrate a function of prohibitin 2 that may underlie its roles in physiology, aging, and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical features, diagnosis, and management of enterovirus 71.

              Although poliomyelitis has been mostly eradicated worldwide, large outbreaks of the related enterovirus 71 have been seen in Asia-Pacific countries in the past 10 years. This virus mostly affects children, manifesting as hand, foot, and mouth disease, aseptic meningitis, poliomyelitis-like acute flaccid paralysis, brainstem encephalitis, and other severe systemic disorders, including especially pulmonary oedema and cardiorespiratory collapse. Clinical predictors of severe disease include high temperature and lethargy, and lumbar puncture might reveal pleocytosis. Many diagnostic tests are available, but PCR of throat swabs and vesicle fluid, if available, is among the most efficient. Features of inflammation, particularly in the anterior horns of the spinal cord, the dorsal pons, and the medulla can be clearly seen on MRI. No established antiviral treatment is available. Intravenous immunoglobulin seems to be beneficial in severe disease, perhaps through non-specific anti-inflammatory mechanisms, but has not been tested in any formal trials. Milrinone might be helpful in patients with cardiac dysfunction. Copyright © 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                08 April 2020
                April 2020
                : 12
                : 4
                : 414
                Affiliations
                Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; swt937872090@ 123456163.com (W.S.); 15625985968@ 123456163.com (S.H.); gg3612@ 123456163.com (H.Z.)
                Author notes
                Article
                viruses-12-00414
                10.3390/v12040414
                7232526
                32276428
                a590cc6f-458a-400b-a608-5a991bc3296a
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 January 2020
                : 03 April 2020
                Categories
                Article

                Microbiology & Virology
                enterovirus a71,vp1,prohibitin 2,autophagy,autolysosome,virus infection,virus replication

                Comments

                Comment on this article