14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Logarithmic correction to BH entropy as Noether charge

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We consider the role of the type-A trace anomaly in static black hole solutions to semiclassical Einstein equation in four dimensions. Via Wald's Noether charge formalism, we compute the contribution to the entropy coming from the anomaly induced effective action and unveil a logarithmic correction to the Bekenstein-Hawking area law. The corrected entropy is given by a seemingly universal formula involving the coefficient of the type-A trace anomaly, the Euler characteristic of the horizon and the value at the horizon of the solution to the uniformization problem for Q-curvature. Two instances are examined in detail: Schwarzschild and a four-dimensional massless topological black hole. We also find agreement with the logarithmic correction due to one-loop contribution of conformal fields in the Schwarzschild background.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Quantum Geometry and Black Hole Entropy

          A `black hole sector' of non-perturbative canonical quantum gravity is introduced. The quantum black hole degrees of freedom are shown to be described by a Chern-Simons field theory on the horizon. It is shown that the entropy of a large non-rotating black hole is proportional to its horizon area. The constant of proportionality depends upon the Immirzi parameter, which fixes the spectrum of the area operator in loop quantum gravity; an appropriate choice of this parameter gives the Bekenstein-Hawking formula S = A/4*l_p^2. With the same choice of the Immirzi parameter, this result also holds for black holes carrying electric or dilatonic charge, which are not necessarily near extremal.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            On Black Hole Entropy

            , , (2010)
            Two techniques for computing black hole entropy in generally covariant gravity theories including arbitrary higher derivative interactions are studied. The techniques are Wald's Noether charge approach introduced recently, and a field redefinition method developed in this paper. Wald's results are extended by establishing that his local geometric expression for the black hole entropy gives the same result when evaluated on an arbitrary cross-section of a Killing horizon (rather than just the bifurcation surface). Further, we show that his expression for the entropy is not affected by ambiguities which arise in the Noether construction. Using the Noether charge expression, the entropy is evaluated explicitly for black holes in a wide class of generally covariant theories. Further, it is shown that the Killing horizon and surface gravity of a stationary black hole metric are invariant under field redefinitions of the metric of the form \(\bar{g}_{ab}\equiv g_{ab} + \Delta_{ab}\), where \(\Delta_{ab}\) is a tensor field constructed out of stationary fields. Using this result, a technique is developed for evaluating the black hole entropy in a given theory in terms of that of another theory related by field redefinitions. Remarkably, it is established that certain perturbative, first order, results obtained with this method are in fact {\it exact}. The possible significance of these results for the problem of finding the statistical origin of black hole entropy is discussed.}
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Logarithmic correction to the Bekenstein-Hawking entropy

              The exact formula derived by us earlier for the entropy of a four dimensional non-rotating black hole within the quantum geometry formulation of the event horizon in terms of boundary states of a three dimensional Chern-Simons theory, is reexamined for large horizon areas. In addition to the {\it semiclassical} Bekenstein-Hawking contribution to the area obtained earlier, we find a contribution proportional to the logarithm of the area together with subleading corrections that constitute a series in inverse powers of the area.
                Bookmark

                Author and article information

                Journal
                04 March 2010
                Article
                10.1007/JHEP07(2010)012
                1003.1083
                a5b0b0c7-f9f6-4f88-ae0e-838f2995b44d

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                JHEP 1007:012,2010
                14 pages, JHEP style
                hep-th gr-qc

                Comments

                Comment on this article