Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A new genus and new species in the tribe Uramyini (Diptera: Tachinidae) from Area de Conservación Guanacaste in northwestern Costa Rica

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract
          Background

          We describe one new genus and its one new species from Area de Conservación Guanacaste (ACG) in northwestern Costa Rica. Our study provides a concise description of this new species using morphology, life history, molecular data and photographic documentation.

          New information

          Chorotegamyia gen. n. is described, along with its type species, Chorotegamyia aureofacies sp. n. A modified key to the Uramyini is given to further elucidate the tribe.

          Related collections

          Most cited references 15

          • Record: found
          • Abstract: not found
          • Article: not found

          An inexpensive, automation-friendly protocol for recovering high-quality DNA

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections.

            We DNA barcoded 2,597 parasitoid wasps belonging to 6 microgastrine braconid genera reared from parapatric tropical dry forest, cloud forest, and rain forest in Area de Conservación Guanacaste (ACG) in northwestern Costa Rica and combined these data with records of caterpillar hosts and morphological analyses. We asked whether barcoding and morphology discover the same provisional species and whether the biological entities revealed by our analysis are congruent with wasp host specificity. Morphological analysis revealed 171 provisional species, but barcoding exposed an additional 142 provisional species; 95% of the total is likely to be undescribed. These 313 provisional species are extraordinarily host specific; more than 90% attack only 1 or 2 species of caterpillars out of more than 3,500 species sampled. The most extreme case of overlooked diversity is the morphospecies Apanteles leucostigmus. This minute black wasp with a distinctive white wing stigma was thought to parasitize 32 species of ACG hesperiid caterpillars, but barcoding revealed 36 provisional species, each attacking one or a very few closely related species of caterpillars. When host records and/or within-ACG distributions suggested that DNA barcoding had missed a species-pair, or when provisional species were separated only by slight differences in their barcodes, we examined nuclear sequences to test hypotheses of presumptive species boundaries and to further probe host specificity. Our iterative process of combining morphological analysis, ecology, and DNA barcoding and reiteratively using specimens maintained in permanent collections has resulted in a much more fine-scaled understanding of parasitoid diversity and host specificity than any one of these elements could have produced on its own.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae).

              Insect parasitoids are a major component of global biodiversity and affect the population dynamics of their hosts. However, identification of insect parasitoids is often difficult, and they are suspected to contain many cryptic species. Here, we ask whether the cytochrome c oxidase I DNA barcode could function as a tool for species identification and discovery for the 20 morphospecies of Belvosia parasitoid flies (Diptera: Tachinidae) that have been reared from caterpillars (Lepidoptera) in Area de Conservación Guanacaste (ACG), northwestern Costa Rica. Barcoding not only discriminates among all 17 highly host-specific morphospecies of ACG Belvosia, but it also raises the species count to 32 by revealing that each of the three generalist species are actually arrays of highly host-specific cryptic species. We also identified likely hybridization among Belvosia by using a variable internal transcribed spacer region 1 nuclear rDNA sequence as a genetic covariate in addition to the strategy of overlaying barcode clusters with ecological information. If general, these results will increase estimates of global species richness and imply that tropical conservation and host-parasite interactions may be more complex than expected.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biodivers Data J
                Biodivers Data J
                1
                urn:lsid:arphahub.com:pub:F9B2E808-C883-5F47-B276-6D62129E4FF4
                urn:lsid:zoobank.org:pub:245B00E9-BFE5-4B4F-B76E-15C30BA74C02
                Biodiversity Data Journal
                Pensoft Publishers
                1314-2828
                2020
                21 February 2020
                : 8
                Affiliations
                [1 ] Agriculture Agri-Food Canada, Ottawa, Canada Agriculture Agri-Food Canada Ottawa Canada
                [2 ] University of Guelph, Guelph, Canada University of Guelph Guelph Canada
                [3 ] University of Pennsylvania, Philadelphia, United States of America University of Pennsylvania Philadelphia United States of America
                Author notes
                Corresponding author: AJ Fleming ( ajfleming604@ 123456gmail.com ).

                Academic editor: Pierfilippo Cerretti

                Article
                48907 12341
                10.3897/BDJ.8.e48907
                7048859
                AJ Fleming, D. Monty Wood, M. Alex Smith, Tanya Dapkey, Winnie Hallwachs, Daniel Janzen

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Page count
                Figures: 5, Tables: 0, References: 21
                Categories
                Taxonomic Paper
                Insecta
                Tachinidae
                Diptera
                Arthropoda
                Hexapoda
                Invertebrata
                Animalia
                Systematics
                Biodiversity & Conservation
                Taxonomy
                Central America and the Caribbean
                Central America
                Americas
                Costa Rica

                Comments

                Comment on this article