16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mitochondrial Ca(2+) uptake depends on the spatial and temporal profile of cytosolic Ca(2+) signals.

      The Journal of Biological Chemistry
      Calcium, metabolism, Cytoplasm, HeLa Cells, Humans, Ion Transport, Mitochondria

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Using confocal imaging of Rhod-2-loaded HeLa cells, we examined the ability of mitochondria to sequester Ca(2+) signals arising from different sources. Mitochondrial Ca(2+) (Ca(2+)mit) uptake was stimulated by inositol 1,4,5-trisphosphate (InsP(3))-evoked Ca(2+) release, capacitative Ca(2+) entry, and Ca(2+) leaking from the endoplasmic reticulum. For each Ca(2+) source, the relationship between cytosolic Ca(2+) (Ca(2+)cyt) concentration and Ca(2+)mit was complex. With Ca(2+)cyt < 300 nm, a slow and persistent Ca(2+)mit uptake was observed. If Ca(2+)cyt increased above approximately 400 nm, Ca(2+)mit uptake accelerated sharply. For equivalent Ca(2+)cyt increases, the rate of Ca(2+)mit rise was greater with InsP(3)-evoked Ca(2+) signals than any other source. Spatial variation of the Ca(2+)mit response was observed within individual cells. Both the fraction of responsive mitochondria and the amplitude of the Ca(2+)mit response were graded in direct proportion to stimulus concentration. Trains of repetitive Ca(2+) oscillations did not maintain elevated Ca(2+)mit levels. Only low frequency Ca(2+) transients (<1/15 min) evoked repetitive Ca(2+)mit signals. Our data indicate that there is a lag between Ca(2+)cyt and Ca(2+)mit increases but that mitochondria will accumulate calcium when it is elevated over basal levels regardless of its source. Furthermore, in addition to the characteristics of Ca(2+) signals, Ca(2+) uniporter desensitization and proximity of mitochondria to InsP(3) receptors modulate mitochondrial Ca(2+) responses.

          Related collections

          Author and article information

          Journal
          11333261
          10.1074/jbc.M101101200

          Chemistry
          Calcium,metabolism,Cytoplasm,HeLa Cells,Humans,Ion Transport,Mitochondria
          Chemistry
          Calcium, metabolism, Cytoplasm, HeLa Cells, Humans, Ion Transport, Mitochondria

          Comments

          Comment on this article