15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Edge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Disruptive colouration is a visual camouflage composed of false edges and boundaries. Many disruptively camouflaged animals feature enhanced edges; light patches are surrounded by a lighter outline and/or a dark patches are surrounded by a darker outline. This camouflage is particularly common in amphibians, reptiles and lepidopterans. We explored the role that this pattern has in creating effective camouflage. In a visual search task utilising an ultra-large display area mimicking search tasks that might be found in nature, edge enhanced disruptive camouflage increases crypsis, even on substrates that do not provide an obvious visual match. Specifically, edge enhanced camouflage is effective on backgrounds both with and without shadows; i.e. this is not solely due to background matching of the dark edge enhancement element with the shadows. Furthermore, when the dark component of the edge enhancement is omitted the camouflage still provided better crypsis than control patterns without edge enhancement. This kind of edge enhancement improved camouflage on all background types. Lastly, we show that edge enhancement can create a perception of multiple surfaces. We conclude that edge enhancement increases the effectiveness of disruptive camouflage through mechanisms that may include the improved disruption of the object outline by implying pictorial relief.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Disruptive coloration and background pattern matching.

          Effective camouflage renders a target indistinguishable from irrelevant background objects. Two interrelated but logically distinct mechanisms for this are background pattern matching (crypsis) and disruptive coloration: in the former, the animal's colours are a random sample of the background; in the latter, bold contrasting colours on the animal's periphery break up its outline. The latter has long been proposed as an explanation for some apparently conspicuous coloration in animals, and is standard textbook material. Surprisingly, only one quantitative test of the theory exists, and one experimental test of its effectiveness against non-human predators. Here we test two key predictions: that patterns on the body's outline should be particularly effective in promoting concealment and that highly contrasting colours should enhance this disruptive effect. Artificial moth-like targets were exposed to bird predation in the field, with the experimental colour patterns on the 'wings' and a dead mealworm as the edible 'body'. Survival analysis supported the predictions, indicating that disruptive coloration is an effective means of camouflage, above and beyond background pattern matching.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            Bayesian Cognitive Modeling

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Defining disruptive coloration and distinguishing its functions.

              Disruptive coloration breaks up the shape and destroys the outline of an object, hindering detection. The principle was first suggested approximately a century ago, but, although research has significantly increased, the field remains conceptually unstructured and no unambiguous definition exists. This has resulted in variable use of the term, making it difficult to formulate testable hypotheses that are comparable between studies, slowing down advancement in this field. Related to this, a range of studies do not effectively distinguish between disruption and other forms of camouflage. Here, we give a formal definition of disruptive coloration, reorganize a range of sub-principles involved in camouflage and argue that five in particular are specifically related to disruption: differential blending; maximum disruptive contrast; disruption of surface through false edges; disruptive marginal patterns; and coincident disruptive coloration. We discuss how disruptive coloration can be optimized, how it can relate to other forms of camouflage markings and where future work is particularly needed.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                06 December 2016
                2016
                : 6
                : 38274
                Affiliations
                [1 ]Abertay University, Division of Psychology, School of Social and Health Sciences , 1, Bell St, Dundee, DD1 1HG, United Kingdom
                [2 ]University of Stirling, Faculty of Natural Sciences, Department of Psychology, Stirling , FK9 4LA, United Kingdom
                Author notes
                Article
                srep38274
                10.1038/srep38274
                5138594
                27922058
                a67b2430-651f-4d7f-8b45-73be1bcf2ead
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 24 March 2016
                : 03 November 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article