16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Data on rumen and faeces microbiota profiles of Yakutian and Kalmyk cattle revealed by high-throughput sequencing of 16S rRNA gene amplicons

      data-paper

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is known that the rumen microbiome directly or indirectly contributes to animal production, and may be a prospective target for mitigation of greenhouse gas emissions [1]. At the same time, feed types and components of diet can influence the composition of the rumen microbiome [2, 3]. Fluctuations in the composition of the digestive tract microbiota can alter the development, health, and productivity of cattle [4]. Many studies of cattle microbiomes have focussed on the rumen microbiota, whereas the faecal microbiota has received less attention [5], [6], [7]. Therefore, the features of the faecal and the ruminal microbiomes in different cattle breeds are yet to be studied. Here, we provided 16S rRNA gene amplicon data of the ruminal and the faecal microbiomes from Yakutian and Kalmyk cattle living in the Republic of Sakha, Yakutia, Russia. Total DNA was extracted from 13 faecal and 13 ruminal samples, and DNA libraries were prepared and sequenced on an Illumina MiSeq platform. Paired-end raw reads were processed, and final operational taxonomic units (OTUs) were assigned to the respective prokaryotic taxa using the RDP (Ribosomal Database Project) database. Analysis of the microbiome composition at the phylum level revealed very similar faecal microbiota between the introduced Kalmyk breed and the indigenous Yakutian breed, whereas the ruminal microbiomes of these breeds differed substantially in terms of relative abundance of some prokaryotic phyla. We believe that the data obtained may provide new insights into the dynamics of the ruminal and the faecal microbiota of cattle as well as disclose breed-specific features of ruminal microbiomes. Besides, these data will contribute to our understanding of the ruminal microbiome structure and function, and might be useful for the management of cattle feeding and ruminal methane production.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          UPARSE: highly accurate OTU sequences from microbial amplicon reads.

          Amplified marker-gene sequences can be used to understand microbial community structure, but they suffer from a high level of sequencing and amplification artifacts. The UPARSE pipeline reports operational taxonomic unit (OTU) sequences with ≤1% incorrect bases in artificial microbial community tests, compared with >3% incorrect bases commonly reported by other methods. The improved accuracy results in far fewer OTUs, consistently closer to the expected number of species in a community.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            UCHIME improves sensitivity and speed of chimera detection

            Motivation: Chimeric DNA sequences often form during polymerase chain reaction amplification, especially when sequencing single regions (e.g. 16S rRNA or fungal Internal Transcribed Spacer) to assess diversity or compare populations. Undetected chimeras may be misinterpreted as novel species, causing inflated estimates of diversity and spurious inferences of differences between populations. Detection and removal of chimeras is therefore of critical importance in such experiments. Results: We describe UCHIME, a new program that detects chimeric sequences with two or more segments. UCHIME either uses a database of chimera-free sequences or detects chimeras de novo by exploiting abundance data. UCHIME has better sensitivity than ChimeraSlayer (previously the most sensitive database method), especially with short, noisy sequences. In testing on artificial bacterial communities with known composition, UCHIME de novo sensitivity is shown to be comparable to Perseus. UCHIME is >100× faster than Perseus and >1000× faster than ChimeraSlayer. Contact: robert@drive5.com Availability: Source, binaries and data: http://drive5.com/uchime. Supplementary information: Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies

              16S ribosomal RNA gene (rDNA) amplicon analysis remains the standard approach for the cultivation-independent investigation of microbial diversity. The accuracy of these analyses depends strongly on the choice of primers. The overall coverage and phylum spectrum of 175 primers and 512 primer pairs were evaluated in silico with respect to the SILVA 16S/18S rDNA non-redundant reference dataset (SSURef 108 NR). Based on this evaluation a selection of ‘best available’ primer pairs for Bacteria and Archaea for three amplicon size classes (100–400, 400–1000, ≥1000 bp) is provided. The most promising bacterial primer pair (S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21), with an amplicon size of 464 bp, was experimentally evaluated by comparing the taxonomic distribution of the 16S rDNA amplicons with 16S rDNA fragments from directly sequenced metagenomes. The results of this study may be used as a guideline for selecting primer pairs with the best overall coverage and phylum spectrum for specific applications, therefore reducing the bias in PCR-based microbial diversity studies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Data Brief
                Data Brief
                Data in Brief
                Elsevier
                2352-3409
                11 October 2020
                December 2020
                11 October 2020
                : 33
                : 106407
                Affiliations
                [a ]Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, 11 Pionerskaya St., Orenburg 460000, Russian Federation
                [b ]Arctic State Agrotechnological University, 15 Krasilnikov St., Yakutsk 677007, Russian Federation
                [c ]Federal Research Centre of Biological Systems and Agro-technologies of RAS, 29 9th Yanvarya St., Orenburg 460000, Russian Federation
                Author notes
                [* ]Corresponding author. vladimir0334@ 123456yandex.ru
                Article
                S2352-3409(20)31289-0 106407
                10.1016/j.dib.2020.106407
                7578675
                a6aa70c3-dce7-4d2d-b0ae-56591dba8fe1
                © 2020 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 August 2020
                : 7 October 2020
                : 8 October 2020
                Categories
                Data Article

                cattle,yakutian breed,kalmyk breed,rumen microbiota,faeces microbiota,microbiome,16s rrna gene,ngs

                Comments

                Comment on this article