1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Thermal adaptation of mRNA secondary structure: stability versus lability

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Significance

          We demonstrate that the free energy change that occurs during folding of the secondary structures (ΔG fold ) of messenger RNAs (mRNAs) for cytosolic malate dehydrogenase varies significantly with evolutionary adaption temperature in marine mollusks. These adaptive changes in ΔG fold confer a physiologically important balance between stability and lability of secondary structure. This balance likely is of key importance in ensuring that the many functions of mRNA that depend on reversible changes in secondary structure can be conducted effectively at different species’ normal body temperatures. Synonymous changes in guanine + cytosine (G+C) content are the primary driver of adaptive change in ΔG fold ; these G+C adaptations can confer appropriate stability on the mRNAs without altering stability or function of the proteins they encode.

          Abstract

          Macromolecular function commonly involves rapidly reversible alterations in three-dimensional structure (conformation). To allow these essential conformational changes, macromolecules must possess higher order structures that are appropriately balanced between rigidity and flexibility. Because of the low stabilization free energies (marginal stabilities) of macromolecule conformations, temperature changes have strong effects on conformation and, thereby, on function. As is well known for proteins, during evolution, temperature-adaptive changes in sequence foster retention of optimal marginal stability at a species’ normal physiological temperatures. Here, we extend this type of analysis to messenger RNAs (mRNAs), a class of macromolecules for which the stability–lability balance has not been elucidated. We employ in silico methods to determine secondary structures and estimate changes in free energy of folding (ΔG fold ) for 25 orthologous mRNAs that encode the enzyme cytosolic malate dehydrogenase in marine mollusks with adaptation temperatures spanning an almost 60 °C range. The change in free energy that occurs during formation of the ensemble of mRNA secondary structures is significantly correlated with adaptation temperature: ΔG fold values are all negative and their absolute values increase with adaptation temperature. A principal mechanism underlying these adaptations is a significant increase in synonymous guanine + cytosine substitutions with increasing temperature. These findings open up an avenue of exploration in molecular evolution and raise interesting questions about the interaction between temperature-adaptive changes in mRNA sequence and in the proteins they encode.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.

          We announce the release of an advanced version of the Molecular Evolutionary Genetics Analysis (MEGA) software, which currently contains facilities for building sequence alignments, inferring phylogenetic histories, and conducting molecular evolutionary analysis. In version 6.0, MEGA now enables the inference of timetrees, as it implements the RelTime method for estimating divergence times for all branching points in a phylogeny. A new Timetree Wizard in MEGA6 facilitates this timetree inference by providing a graphical user interface (GUI) to specify the phylogeny and calibration constraints step-by-step. This version also contains enhanced algorithms to search for the optimal trees under evolutionary criteria and implements a more advanced memory management that can double the size of sequence data sets to which MEGA can be applied. Both GUI and command-line versions of MEGA6 can be downloaded from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            APE: Analyses of Phylogenetics and Evolution in R language.

            Analysis of Phylogenetics and Evolution (APE) is a package written in the R language for use in molecular evolution and phylogenetics. APE provides both utility functions for reading and writing data and manipulating phylogenetic trees, as well as several advanced methods for phylogenetic and evolutionary analysis (e.g. comparative and population genetic methods). APE takes advantage of the many R functions for statistics and graphics, and also provides a flexible framework for developing and implementing further statistical methods for the analysis of evolutionary processes. The program is free and available from the official R package archive at http://cran.r-project.org/src/contrib/PACKAGES.html#ape. APE is licensed under the GNU General Public License.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phylogenetic analysis and comparative data: a test and review of evidence.

              The question is often raised whether it is statistically necessary to control for phylogenetic associations in comparative studies. To investigate this question, we explore the use of a measure of phylogenetic correlation, lambda, introduced by Pagel (1999), that normally varies between 0 (phylogenetic independence) and 1 (species' traits covary in direct proportion to their shared evolutionary history). Simulations show lambda to be a statistically powerful index for measuring whether data exhibit phylogenetic dependence or not and whether it has low rates of Type I error. Moreover, lambda is robust to incomplete phylogenetic information, which demonstrates that even partial information on phylogeny will improve the accuracy of phylogenetic analyses. To assess whether traits generally show phylogenetic associations, we present a quantitative review of 26 published phylogenetic comparative data sets. The data sets include 103 traits and were chosen from the ecological literature in which debate about the need for phylogenetic correction has been most acute. Eighty-eight percent of data sets contained at least one character that displayed significant phylogenetic dependence, and 60% of characters overall (pooled across studies) showed significant evidence of phylogenetic association. In 16% of tests, phylogenetic correlation could be neither supported nor rejected. However, most of these equivocal results were found in small phylogenies and probably reflect a lack of power. We suggest that the parameter lambda be routinely estimated when analyzing comparative data, since it can also be used simultaneously to adjust the phylogenetic correction in a manner that is optimal for the data set, and we present an example of how this may be done.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Proceedings of the National Academy of Sciences
                Proc. Natl. Acad. Sci. U.S.A.
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                November 09 2021
                November 02 2021
                November 09 2021
                : 118
                : 45
                Affiliations
                [1 ]The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China;
                [2 ]Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China;
                [3 ]Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950
                Article
                10.1073/pnas.2113324118
                34728561
                a6b081f7-f200-4e08-bebe-8112768dc8e1
                © 2021

                Free to read

                https://www.pnas.org/site/aboutpnas/licenses.xhtml

                History

                Comments

                Comment on this article