13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plant-derived polyunsaturated fatty acids and markers of glucose metabolism and insulin resistance: a meta-analysis of randomized controlled feeding trials

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The objective of this meta-analysis was to investigate the effects of plant-derived polyunsaturated fatty acids (PUFAs) on glucose metabolism and insulin resistance. Scopus and PubMed databases were searched until January 2018. Eligible studies were randomized controlled feeding trials that investigated the effects of a diet high in plant-derived PUFA as compared with saturated fatty acids (SFA) or carbohydrates and measured markers of glucose metabolism and insulin resistance as outcomes. Data from 13 relevant studies (19 comparisons of plant-derived PUFA with control) were retrieved. Plant-derived PUFA did not significantly affect fasting glucose (−0.01 mmol/L (95 % CI − 0.06 to 0.03 mmol/L)), but lowered fasting insulin by 2.6 pmol/L (−4.9 to −0.2 pmol/L) and homeostatic model assessment-insulin resistance (HOMA-IR) by 0.12 units (-0.23 to − 0.01 units). In dose–response analyses, a 5% increase in energy (En%) from PUFA significantly reduced insulin by 5.8 pmol/L (95% CI −10.2 to −1.3 pmol/L), but not glucose (change −0.07, 95% CI −0.17 to 0.04 mmol/L) and HOMA-IR (change − 0.24, 95% CI −0.56 to 0.07 units). In subgroup analyses, studies with higher PUFA dose (upper tertiles) reduced insulin (-6.7, –10.5 to −2.9 pmol/L) and HOMA-IR (-0.28, –0.45 to −0.12 units), but not glucose (−0.09, 95% CI −0.18 to 0.01 mmol/L), as compared with an isocaloric control. Subgroup analyses showed no differences in effects between SFA and carbohydrates as replacement nutrients (p interaction ≥0.05). Evidence from randomized controlled trials indicated that plant-derived PUFA as an isocaloric replacement for SFA or carbohydrates probably reduces fasting insulin and HOMA-IR in populations without diabetes.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies.

          Saturated fatty acid (SFA) intake increases plasma LDL-cholesterol concentrations; therefore, intake should be reduced to prevent coronary heart disease (CHD). Lower habitual intakes of SFAs, however, require substitution of other macronutrients to maintain energy balance. We investigated associations between energy intake from monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), and carbohydrates and risk of CHD while assessing the potential effect-modifying role of sex and age. Using substitution models, our aim was to clarify whether energy from unsaturated fatty acids or carbohydrates should replace energy from SFAs to prevent CHD. This was a follow-up study in which data from 11 American and European cohort studies were pooled. The outcome measure was incident CHD. During 4-10 y of follow-up, 5249 coronary events and 2155 coronary deaths occurred among 344,696 persons. For a 5% lower energy intake from SFAs and a concomitant higher energy intake from PUFAs, there was a significant inverse association between PUFAs and risk of coronary events (hazard ratio: 0.87; 95% CI: 0.77, 0.97); the hazard ratio for coronary deaths was 0.74 (95% CI: 0.61, 0.89). For a 5% lower energy intake from SFAs and a concomitant higher energy intake from carbohydrates, there was a modest significant direct association between carbohydrates and coronary events (hazard ratio: 1.07; 95% CI: 1.01, 1.14); the hazard ratio for coronary deaths was 0.96 (95% CI: 0.82, 1.13). MUFA intake was not associated with CHD. No effect modification by sex or age was found. The associations suggest that replacing SFAs with PUFAs rather than MUFAs or carbohydrates prevents CHD over a wide range of intakes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reduction in saturated fat intake for cardiovascular disease.

            Reducing saturated fat reduces serum cholesterol, but effects on other intermediate outcomes may be less clear. Additionally it is unclear whether the energy from saturated fats that are lost in the diet are more helpfully replaced by polyunsaturated fats, monounsaturated fats, carbohydrate or protein. This review is part of a series split from and updating an overarching review.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dietary fat intake and risk of type 2 diabetes in women.

              The long-term relations between specific types of dietary fat and risk of type 2 diabetes remain unclear. Our objective was to examine the relations between dietary fat intakes and the risk of type 2 diabetes. We prospectively followed 84204 women aged 34-59 y with no diabetes, cardiovascular disease, or cancer in 1980. Detailed dietary information was assessed at baseline and updated in 1984, 1986, and 1990 by using validated questionnaires. Relative risks of type 2 diabetes were obtained from pooled logistic models adjusted for nondietary and dietary covariates. During 14 y of follow-up, 2507 incident cases of type 2 diabetes were documented. Total fat intake, compared with equivalent energy intake from carbohydrates, was not associated with risk of type 2 diabetes; for a 5% increase in total energy from fat, the relative risk (RR) was 0.98 (95% CI: 0.94, 1.02). Intakes of saturated or monounsaturated fatty acids were also not significantly associated with the risk of diabetes. However, for a 5% increase in energy from polyunsaturated fat, the RR was 0.63 (0.53, 0.76; P < 0.0001) and for a 2% increase in energy from trans fatty acids the RR was 1.39 (1.15, 1.67; P = 0.0006). We estimated that replacing 2% of energy from trans fatty acids isoenergetically with polyunsaturated fat would lead to a 40% lower risk (RR: 0.60; 95% CI: 0.48, 0.75). These data suggest that total fat and saturated and monounsaturated fatty acid intakes are not associated with risk of type 2 diabetes in women, but that trans fatty acids increase and polyunsaturated fatty acids reduce risk. Substituting nonhydrogenated polyunsaturated fatty acids for trans fatty acids would likely reduce the risk of type 2 diabetes substantially.
                Bookmark

                Author and article information

                Journal
                BMJ Open Diabetes Res Care
                BMJ Open Diabetes Res Care
                bmjdrc
                bmjdrc
                BMJ Open Diabetes Research & Care
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2052-4897
                2019
                8 February 2019
                : 7
                : 1
                : e000585
                Affiliations
                [1 ] departmentFuture Health and Wellness , Unilever Research and Development , Vlaardingen, The Netherlands
                [2 ] departmentDivision of Human Nutrition , Wageningen University , Wageningen, The Netherlands
                [3 ] departmentDepartment of Health Sciences , Vrije Universiteit Amsterdam , Amsterdam, The Netherlands
                [4 ] departmentDepartment of Epidemiology and Biostatistics , Amsterdam Public Health Research Institute , Amsterdam, The Netherlands
                Author notes
                [Correspondence to ] Dr Anne J Wanders; anne.wanders@ 123456unilever.com
                Author information
                http://orcid.org/0000-0002-5083-6370
                Article
                bmjdrc-2018-000585
                10.1136/bmjdrc-2018-000585
                6398820
                30899527
                a703aad9-f3d5-4baf-b627-43679690f4ea
                © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 26 July 2018
                : 22 December 2018
                Categories
                Clinical Care/Education/Nutrition
                1506
                1866
                Review
                Custom metadata
                unlocked

                glucose metabolism,meta-analysis,dietary fat,insulin resistance,linoleic acid

                Comments

                Comment on this article