91
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanisms of sensorineural cell damage, death and survival in the cochlea

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The majority of acquired hearing loss, including presbycusis, is caused by irreversible damage to the sensorineural tissues of the cochlea. This article reviews the intracellular mechanisms that contribute to sensorineural damage in the cochlea, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. These data have primarily been generated in hearing loss not directly related to age. However, there is evidence that similar mechanisms operate in presbycusis. Moreover, accumulation of damage from other causes can contribute to age-related hearing loss (ARHL). Potential therapeutic interventions to balance opposing but interconnected cell damage and survival pathways, such as antioxidants, anti-apoptotics, and pro-inflammatory cytokine inhibitors, are also discussed.

          Related collections

          Most cited references169

          • Record: found
          • Abstract: found
          • Article: not found

          Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis.

          Apoptosis plays an important role during neuronal development, and defects in apoptosis may underlie various neurodegenerative disorders. To characterize molecular mechanisms that regulate neuronal apoptosis, the contributions to cell death of mitogen-activated protein (MAP) kinase family members, including ERK (extracellular signal-regulated kinase), JNK (c-JUN NH2-terminal protein kinase), and p38, were examined after withdrawal of nerve growth factor (NGF) from rat PC-12 pheochromocytoma cells. NGF withdrawal led to sustained activation of the JNK and p38 enzymes and inhibition of ERKs. The effects of dominant-interfering or constitutively activated forms of various components of the JNK-p38 and ERK signaling pathways demonstrated that activation of JNK and p38 and concurrent inhibition of ERK are critical for induction of apoptosis in these cells. Therefore, the dynamic balance between growth factor-activated ERK and stress-activated JNK-p38 pathways may be important in determining whether a cell survives or undergoes apoptosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ageing and neuronal vulnerability.

            Everyone ages, but only some will develop a neurodegenerative disorder in the process. Disease might occur when cells fail to respond adaptively to age-related increases in oxidative, metabolic and ionic stress, thereby resulting in the accumulation of damaged proteins, DNA and membranes. Determinants of neuronal vulnerability might include cell size and location, metabolism of disease-specific proteins and a repertoire of signal transduction pathways and stress resistance mechanisms. Emerging evidence on protein interaction networks that monitor and respond to the normal ageing process suggests that successful neural ageing is possible for most people, but also cautions that cures for neurodegenerative disorders are unlikely in the near future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adenosine receptors as therapeutic targets.

              Adenosine receptors are major targets of caffeine, the most commonly consumed drug in the world. There is growing evidence that they could also be promising therapeutic targets in a wide range of conditions, including cerebral and cardiac ischaemic diseases, sleep disorders, immune and inflammatory disorders and cancer. After more than three decades of medicinal chemistry research, a considerable number of selective agonists and antagonists of adenosine receptors have been discovered, and some have been clinically evaluated, although none has yet received regulatory approval. However, recent advances in the understanding of the roles of the various adenosine receptor subtypes, and in the development of selective and potent ligands, as discussed in this review, have brought the goal of therapeutic application of adenosine receptor modulators considerably closer.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Aging Neurosci
                Front Aging Neurosci
                Front. Aging Neurosci.
                Frontiers in Aging Neuroscience
                Frontiers Media S.A.
                1663-4365
                21 April 2015
                2015
                : 7
                : 58
                Affiliations
                [1] 1Department of Surgery/Division of Otolaryngology, University of California, San Diego School of Medicine La Jolla, CA, USA
                [2] 2Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
                [3] 3Veterans Administration Medical Center La Jolla, CA, USA
                [4] 4Department of Neurosciences, University of California, San Diego School of Medicine La Jolla, CA, USA
                Author notes

                Edited by: Marta Magarinos, Universidad Autonoma de Madrid, Spain

                Reviewed by: Gilda Kalinec, University of California, Los Angeles, USA; Joana Neves, Buck Institute for Research on Aging, USA

                *Correspondence: Allen F. Ryan, Department of Surgery/Division of Otolaryngology, University of California, San Diego School of Medicine, 9500 Gilman Drive – MC#0666, La Jolla, CA 92093-0666, USA Tel: +1.858.534.4594, Fax: +1.858.534.5319 afryan@ 123456ucsd.edu
                Article
                10.3389/fnagi.2015.00058
                4404918
                25954196
                a7557e60-009d-4fd7-873f-f85aa7db64f6
                Copyright © 2015 Wong and Ryan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 January 2015
                : 05 April 2015
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 182, Pages: 15, Words: 0
                Categories
                Neuroscience
                Review

                Neurosciences
                presbycusis,age-related hearing loss (arhl),hair cells (hcs),spiral ganglion neurons (sgn),reactive oxygen species (ros),c-jun terminal kinase (jnk),inflammation,cell survival signaling

                Comments

                Comment on this article