8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Side effects of ruxolitinib in patients with SARS-CoV-2 infection: two case reports

      letter

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • Innovative drugs are not always available in emergency settings

          • Use of ruxolitinib in patients with COVID-19 has given unsatisfactory results

          • Janus kinase (JAK) inhibitors may be associated with a major incidence of side effects in COVID-19 patients

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: not found

          COVID-19: combining antiviral and anti-inflammatory treatments

          Both coronavirus disease 2019 (COVID-19) and severe acute respiratory syndrome (SARS) are characterised by an overexuberant inflammatory response and, for SARS, viral load is not correlated with the worsening of symptoms.1, 2 In our previous Correspondence to The Lancet, 3 we described how BenevolentAI's proprietary artificial intelligence (AI)-derived knowledge graph, 4 queried by a suite of algorithms, enabled identification of a target and a potential therapeutic against SARS coronavirus 2 (SARS-CoV-2; the causative organism in COVID-19). We identified a group of approved drugs that could inhibit clathrin-mediated endocytosis and thereby inhibit viral infection of cells (appendix). The drug targets are members of the numb-associated kinase (NAK) family—including AAK1 and GAK—the inhibition of which has been shown to reduce viral infection in vitro.5, 6 Baricitinib was identified as a NAK inhibitor, with a particularly high affinity for AAK1, a pivotal regulator of clathrin-mediated endocytosis. We suggested that this drug could be of use in countering SARS-CoV-2 infections, subject to appropriate clinical testing. To take this work further in a short timescale, a necessity when dealing with a new human pathogen, we re-examined the affinity and selectivity of all the approved drugs in our knowledge graph to identify those with both antiviral and anti-inflammatory properties. Such drugs are predicted to be of particular importance in the treatment of severe cases of COVID-19, when the host inflammatory response becomes a major cause of lung damage and subsequent mortality. Comparison of the properties of the three best candidates are shown in the table . Baricitinib, fedratinib, and ruxolitinib are potent and selective JAK inhibitors approved for indications such as rheumatoid arthritis and myelofibrosis. All three are powerful anti-inflammatories that, as JAK–STAT signalling inhibitors, are likely to be effective against the consequences of the elevated levels of cytokines (including interferon-γ) typically observed in people with COVID-19· 2 Although the three candidates have similar JAK inhibitor potencies, a high affinity for AAK1 suggests baricitinib is the best of the group, especially given its once-daily oral dosing and acceptable side-effect profile. 7 The most significant side-effect seen over 4214 patient-years in the clinical trial programmes used for European Medicines Agency registration was a small increase in upper respiratory tract infections (similar to that observed with methotrexate), but the incidence of serious infections (eg, herpes zoster) over 52 weeks' dosing was small (3·2 per 100 patient-years), and similar to placebo. 7 Use of this agent in patients with COVID-19 over 7–14 days, for example, suggests side-effects would be trivial. Table Properties of three antiviral and anti-inflammatory candidate drugs Baricitinib Ruxolitinib Fedratinib Daily dose, mg 2–10 25 400 Affinity and efficacy: Kd or IC50, nM* AAK1† Cell free 17 100 32 Cell 34 700 960 GAK† Cell free 136 120 1 Cell 272 840 30 BIKE† Cell free 40 210 32 Cell 80 1470 960 JAK1 Cell free 6 3 20 Cell 12 20 600 JAK2 Cell free 6 3 3 Cell 11 21 100 JAK3 Cell free >400 2 79 Cell >800 14 2370 TYK2 Cell free 53 1 20 Cell 106 7 600 Pharmacokinetics Plasma protein binding 50% 97% 95% Cmax (unbound), nM 103‡ 117 170 Safety: tolerated dose ≤10 mg/day ≤20 mg twice daily ≤400 mg/day See regulatory approval documents for further information on these drugs. Kd=dissociation constant. IC50=half-maximal inhibitory concentration. Cmax=maximum serum concentration. * All values are IC50 except the cell free values for AAK1, GAK, and BIKE; “cell free” values indicate inhibitory activity against purified protein in biochemical assay; “cell” values indicate enzyme-inhibitory activity inside a cell. † In the absence of direct measurements of drug inhibition in cells, the predicted cell affinity and efficacy values are derived from the ratio of each compound for their primary target; for example, for baricitinib, IC50 AAK1[cell] = (IC50AK1[cell] / IC50AK1[cell free]) × IC50AAK1[cell free]. ‡ At a 10 mg dose. Other AI-algorithm-predicted NAK inhibitors include a combination of the oncology drugs sunitinib and erlotinib, shown to reduce the infectivity of a wide range of viruses, including hepatitis C virus, dengue virus, Ebola virus, and respiratory syncytial virus.5, 6 However, sunitinib and erlotinib would be difficult for patients to tolerate at the doses required to inhibit AAK1 and GAK. By contrast, at therapeutic doses used for the treatment of patients with rheumatoid arthritis, the free plasma concentrations of baricitinib are predicted to be sufficient to inhibit AAK1, and potentially GAK, in cell-based assays. The predicted inhibition of clathrin-mediated endocytosis by baricitinib is unlikely to be observed with other anti-arthritic drugs or JAK inhibitors. Our analysis of the closely related JAK inhibitors ruxolitinib and fedratinib (table) illustrates that the predicted unbound plasma exposure required to inhibit the enzymes needed for clathrin-mediated endocytosis greatly exceeds the currently tolerated exposures used therapeutically. These drugs are, therefore, unlikely to reduce viral infectivity at tolerated doses, although they might reduce the host inflammatory response through JAK inhibition. Intriguingly, another JAK inhibitor, tofacitinib, shows no detectable inhibition of AAK1. The high affinity of baricitinib for NAKs, its anti-inflammatory properties, and its ability to ameliorate associated chronic inflammation in interferonopathies, 8 together with its advantageous pharmacokinetic properties, appear to make it a special case among the approved drugs. In addition, the potential for combination therapy with baracitinib is high because of its low plasma protein binding and minimal interaction with CYP enzymes and drug transporters. Furthermore, there is the potential for combining baricitinib with the direct-acting antivirals (lopinavir or ritonavir and remdesivir) currently being used in the COVID-19 outbreak, since it has a minimal interaction with the relevant CYP drug-metabolising enzymes. Combinations of baricitinib with these direct-acting antivirals could reduce viral infectivity, viral replication, and the aberrant host inflammatory response. This work demonstrates that the use of an AI-driven knowledge graph can facilitate rapid drug development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Exploring the Relevance of Senotherapeutics for the Current SARS-CoV-2 Emergency and Similar Future Global Health Threats

            The higher death rate caused by COVID-19 in older people, especially those with comorbidities, is a challenge for biomedical aging research. Here we explore the idea that an exacerbated inflammatory response, in particular that mediated by IL-6, may drive the deleterious consequences of the infection. Data shows that other RNA viruses, such as influenza virus, can display enhanced replication efficiency in senescent cells, suggesting that the accumulation of senescent cells with aging and age-related diseases may play a role in this phenomenon. However, at present, we are completely unaware of the response to SARS-CoV and SARS-COV-2 occurring in senescent cells. We deem that this is a priority area of research because it could lead to the development of several therapeutic strategies based on senotherapeutics or prevent unsuccessful attempts. Two of these senotherapeutics, azithromycin and ruxolitinib, are currently undergoing testing for their efficacy in treating COVID-19. The potential of these strategies is not only for ameliorating the consequences of the current emergence of SARS-CoV-2, but also for the future emergence of new viruses or mutated ones for which we are completely unprepared and for which no vaccines are available.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effect of CYP3A4 inhibition or induction on the pharmacokinetics and pharmacodynamics of orally administered ruxolitinib (INCB018424 phosphate) in healthy volunteers.

              Ruxolitinib, a selective Janus kinase (JAK) 1&2 inhibitor in development for the treatment of myeloproliferative neoplasms, is primarily metabolized by CYP3A4. The effects of inhibition or induction of CYP3A4 on single oral dose ruxolitinib pharmacokinetics (PK) and pharmacodynamics (PD) were evaluated in healthy volunteers. Coadministration of ketoconazole (a potent CYP3A4 inhibitor) and erythromycin (a moderate CYP3A4 inhibitor) increased total ruxolitinib plasma exposure (AUC(0-∞)) by 91% and 27%, respectively, and ruxolitinib PD, as measured by the inhibition of interleukin (IL)-6-stimulated STAT3 phosphorylation in whole blood, was generally consistent with the PK observed. Pretreatment with rifampin, a potent CYP3A4 inducer, decreased ruxolitinib AUC(0-∞) by 71% while resulting in only a 10% decrease in the overall PD activity. This apparent PK/PD discrepancy may be explained, in part, by an increase in the relative abundance of ruxolitinib active metabolites with the rifampin coadministration. The collective PK/PD data suggest that starting doses of ruxolitinib should be reduced by 50% if coadministered with a potent CYP3A4 inhibitor, whereas adjustments in ruxolitinib starting doses may not be needed when coadministered with inducers or mild/moderate inhibitors of CYP3A4. All study doses of ruxolitinib were generally safe and well tolerated when given alone and in combination with ketoconazole, erythromycin, or rifampin.
                Bookmark

                Author and article information

                Contributors
                Journal
                Int J Antimicrob Agents
                Int. J. Antimicrob. Agents
                International Journal of Antimicrobial Agents
                Elsevier B.V. and International Society of Chemotherapy.
                0924-8579
                1872-7913
                22 May 2020
                22 May 2020
                : 106023
                Affiliations
                [a ]Unit of Dermatology, Head and Neck Department, St. Orsola Malpighi University Hospital, Bologna, Italy
                [b ]Unit of Infectious and Tropical Diseases, SS Annunziata Hospital, Cosenza, Italy
                Author notes
                [* ]Corresponding author: Dr. Corrado Zengarini, Dermatology Unit, S. Orsola Hospital, University of Bologna, Orsola-Malpighi Hospital, Bologna, Italy, Ph: +39051-2144848. corrado.zengarini@ 123456yahoo.it
                Article
                S0924-8579(20)30186-2 106023
                10.1016/j.ijantimicag.2020.106023
                7243754
                32450201
                a7b1582c-1286-4358-87a4-5eb4956935b2
                © 2020 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 1 May 2020
                : 14 May 2020
                Categories
                Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article