12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dependence Potential of Quetiapine: Behavioral Pharmacology in Rodents

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quetiapine is an atypical or second-generation antipsychotic agent and has been a subject of a series of case report and suggested to have the potential for misuse or abuse. However, it is not a controlled substance and is not generally considered addictive. In this study, we examined quetiapine’s dependence potential and abuse liability through animal behavioral tests using rodents to study the mechanism of quetiapine. Molecular biology techniques were also used to find out the action mechanisms of the drug. In the animal behavioral tests, quetiapine did not show any positive effect on the experimental animals in the climbing, jumping, and conditioned place preference tests. However, in the head twitch and self-administration tests, the experimental animals showed significant positive responses. In addition, the action mechanism of quetiapine was found being related to dopamine and serotonin release. These results demonstrate that quetiapine affects the neurological systems related to abuse liability and has the potential to lead psychological dependence, as well.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Drugs of abuse: anatomy, pharmacology and function of reward pathways.

          Drugs of abuse are very powerful reinforcers, and even in conditions of limited access (where the organism is not dependent) these drugs will motivate high rates of operant responding. This presumed hedonic property and the drugs' neuropharmacological specificity provide a means of studying the neuropharmacology and neuroanatomy of brain reward. Three major brain systems appear to be involved in drug reward--dopamine, opioid and GABA. Evidence suggests a midbrain-forebrain-extrapyramidal circuit with its focus in the nucleus accumbens. Data implicating dopamine and opioid systems in indirect sympathomimetic and opiate reward include critical elements in both the nucleus accumbens and ventral tegmental areas. Ethanol reward appears to depend on an interaction with the GABAA receptor complex but may also involve common elements such as dopamine and opioid peptides in this midbrain-forebrain-extrapyramidal circuit. These results suggest that brain reward systems have a multidetermined neuropharmacological basis that may involve some common neuroanatomical elements.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stress, dysregulation of drug reward pathways, and the transition to drug dependence.

            This review provides a neuroadaptive perspective regarding the role of the hormonal and brain stress systems in drug addiction with a focus on the changes that occur during the transition from limited access to drugs to long-term compulsive use of drugs. A dramatic escalation in drug intake with extended access to drug self-administration is characterized by a dysregulation of brain reward pathways. Hormonal studies using an experimenter-administered cocaine binge model and an escalation self-administration model have revealed large increases in ACTH and corticosterone in rats during an acute binge with attenuation during the chronic binge stage and a reactivation of the hypothalamic-pituitary-adrenal axis during acute withdrawal. The activation of the hypothalamic-pituitary-adrenal axis with cocaine appears to depend on feed-forward activation of the mesolimbic dopamine system. At the same time, escalation in drug intake with either extended access or dependence-induction produces an activation of the brain stress system's corticotropin-releasing factor outside of the hypothalamus in the extended amygdala, which is particularly evident during acute withdrawal. A model of the role of different levels of hormonal/brain stress activation in addiction is presented that has heuristic value for understanding individual vulnerability to drug dependence and novel treatments for the disorder.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Drug reinforcement studied by the use of place conditioning in rat.

              Rats display a preference for an environment in which they previously received morphine. The present report provides behavioral and pharmacological data for this simple model of reinforcement produced by opiates and describes an aversion in rats for an environment in which they previously received naloxone. Preferences were produced with intravenous (i.v.) morphine sulfate at doses of 0.08-15 mg/kg and durations of the pairing between environment and morphine of 10 min to 1.5 h. Preferences were also seen with other opiate agonists (etorphine-HCl and levorphanol-tartrate), another route of drug administration (subcutaneous), and after 1-4 administrations of morphine. Cocaine-HCl (i.v.), a non-narcotic drug, known to be self-administered by humans, also produced a place preference. Lithium chloride (i.v.), an agent found to be a punishing stimulus in other situations, produced a place aversion. There was no appreciable preference for an environment paired with dextrorphan-tartrate and naloxone-HCl (2 mg/kg, i.p.) blocked the production of the preference produced by i.v. morphine. In contrast to the effect produced by morphine, aversions were produced with (-)-naloxone-HCl alone at doses of 0.1-45 mg/kg (i.v.). The aversion was not produced at (+)-naloxone. Implantation of rats with a 75 mg morphine pellet 3 days prior to place conditioning potentiated the aversive effect of naloxone. It was concluded that place conditioning produced by morphine and naloxone is mediated by specific opiate receptors and that stimulating and decreasing activity of the endogenous opioid peptide system with systemically administered drugs is positively reinforcing and aversive, respectively. The discussion emphasizes application of the simple and sensitive place conditioning model to drug reinforcement research, including analyses of reinforcement produced by microinjection of opiates into the brain.
                Bookmark

                Author and article information

                Journal
                Biomol Ther (Seoul)
                Biomol Ther (Seoul)
                ksp
                Biomolecules & Therapeutics
                The Korean Society of Applied Pharmacology
                1976-9148
                2005-4483
                30 July 2013
                : 21
                : 4
                : 307-312
                Affiliations
                Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungwon 363-700, Republic of Korea
                Author notes
                [* ]Corresponding Author E-mail: hosa33@ 123456korea.kr Tel: +82-43-719-5202, Fax: +82-43-719-5200
                Article
                ooomb4-21-307
                10.4062/biomolther.2013.035
                3819904
                24244816
                a7bd0ea1-9eb8-46bf-9c22-5ef925597b1d
                Copyright ©2013, The Korean Society of Applied Pharmacology

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 April 2013
                : 11 July 2013
                : 15 July 2013
                Categories
                Articles

                quetiapine,dopamine system,serotonin system,drug dependence,animal behavioral tests

                Comments

                Comment on this article