Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TERTIAN: Clinical Endpoint Prediction in ICU via Time-Aware Transformer-Based Hierarchical Attention Network

      research-article
      1 , 1 , 1 , 2 ,
      Computational Intelligence and Neuroscience
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accurately predicting the clinical endpoint in ICU based on the patient's electronic medical records (EMRs) is essential for the timely treatment of critically ill patients and allocation of medical resources. However, the patient's EMRs usually consist of a large amount of heterogeneous multivariate time series data such as laboratory tests and vital signs, which are produced irregularly. Most existing methods fail to effectively model the time irregularity inherent in longitudinal patient medical records and capture the interrelationships among different types of data. To tackle these limitations, we propose a novel time-aware transformer-based hierarchical attention network (TERTIAN) for clinical endpoint prediction. In this model, a time-aware transformer is introduced to learn the personalized irregular temporal patterns of medical events, and a hierarchical attention mechanism is deployed to get the accurate patient fusion representation by comprehensively mining the interactions and correlations among multiple types of medical data. We evaluate our model on the MIMIC-III dataset and MIMIC-IV dataset for the task of mortality prediction, and the results show that TERTIAN achieves higher performance than state-of-the-art approaches.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Long Short-Term Memory

          Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Attention Is All You Need

            The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data. 15 pages, 5 figures
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MIMIC-III, a freely accessible critical care database

              MIMIC-III (‘Medical Information Mart for Intensive Care’) is a large, single-center database comprising information relating to patients admitted to critical care units at a large tertiary care hospital. Data includes vital signs, medications, laboratory measurements, observations and notes charted by care providers, fluid balance, procedure codes, diagnostic codes, imaging reports, hospital length of stay, survival data, and more. The database supports applications including academic and industrial research, quality improvement initiatives, and higher education coursework.
                Bookmark

                Author and article information

                Contributors
                Journal
                Comput Intell Neurosci
                Comput Intell Neurosci
                cin
                Computational Intelligence and Neuroscience
                Hindawi
                1687-5265
                1687-5273
                2022
                16 December 2022
                : 2022
                : 4207940
                Affiliations
                1Big Data Institute, Central South University, Changsha, Hunan, China
                2School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
                Author notes

                Academic Editor: Alexander Hošovský

                Author information
                https://orcid.org/0000-0003-0574-5135
                https://orcid.org/0000-0003-1235-0086
                https://orcid.org/0000-0002-4338-015X
                https://orcid.org/0000-0002-6347-0769
                Article
                10.1155/2022/4207940
                9788893
                36567811
                a7d99149-7bdb-4049-bd31-2b8a74ec488c
                Copyright © 2022 Ying An et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 May 2022
                : 19 November 2022
                : 22 November 2022
                Funding
                Funded by: National Basic Research Program of China (973 Program)
                Award ID: 2021YFF1201300
                Funded by: National Natural Science Foundation of China
                Award ID: 61877059
                Funded by: Natural Science Foundation of Hunan Province
                Award ID: 2018JJ2534
                Categories
                Research Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article