3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Situation of India in the COVID-19 Pandemic: India’s Initial Pandemic Experience

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this article, we investigate the impact of COVID-19 through screening and surveillance methods adopted in India, as well as the potential health system, social, political, and economic consequences. The research was done in a chronological manner, and data was collected between 30 January 2020 till 12 June 2020. Initial containment measures, including point of entry screenings and testing protocols, appeared insufficient. However, testing capacity was gradually expanded after the commencement of a nation-wide lockdown. Modeling predictions have shown varying results on the emergence of cases depending on the infectiousness of asymptomatic individuals, with a peak predicted in mid-July having over two million cases. The country also faces risks of the economic plunge by losing approximately 4% of its gross domestic product, due to containment measures and reduction in goods importation. The low public health expenditure combined with a lack of infrastructure and low fiscal response implies several challenges to scale up the COVID-19 response and management. Therefore, an emergency preparedness and response plan is essential to integrate into the health system of India.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges

          Highlights • Emergence of 2019 novel coronavirus (2019-nCoV) in China has caused a large global outbreak and major public health issue. • At 9 February 2020, data from the WHO has shown >37 000 confirmed cases in 28 countries (>99% of cases detected in China). • 2019-nCoV is spread by human-to-human transmission via droplets or direct contact. • Infection estimated to have an incubation period of 2–14 days and a basic reproduction number of 2.24–3.58. • Controlling infection to prevent spread of the 2019-nCoV is the primary intervention being used.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The reproductive number of COVID-19 is higher compared to SARS coronavirus

            Introduction In Wuhan, China, a novel and alarmingly contagious primary atypical (viral) pneumonia broke out in December 2019. It has since been identified as a zoonotic coronavirus, similar to SARS coronavirus and MERS coronavirus and named COVID-19. As of 8 February 2020, 33 738 confirmed cases and 811 deaths have been reported in China. Here we review the basic reproduction number (R 0) of the COVID-19 virus. R 0 is an indication of the transmissibility of a virus, representing the average number of new infections generated by an infectious person in a totally naïve population. For R 0 > 1, the number infected is likely to increase, and for R 0 < 1, transmission is likely to die out. The basic reproduction number is a central concept in infectious disease epidemiology, indicating the risk of an infectious agent with respect to epidemic spread. Methods and Results PubMed, bioRxiv and Google Scholar were accessed to search for eligible studies. The term ‘coronavirus & basic reproduction number’ was used. The time period covered was from 1 January 2020 to 7 February 2020. For this time period, we identified 12 studies which estimated the basic reproductive number for COVID-19 from China and overseas. Table 1 shows that the estimates ranged from 1.4 to 6.49, with a mean of 3.28, a median of 2.79 and interquartile range (IQR) of 1.16. Table 1 Published estimates of R 0 for 2019-nCoV Study (study year) Location Study date Methods Approaches R 0 estimates (average) 95% CI Joseph et al. 1 Wuhan 31 December 2019–28 January 2020 Stochastic Markov Chain Monte Carlo methods (MCMC) MCMC methods with Gibbs sampling and non-informative flat prior, using posterior distribution 2.68 2.47–2.86 Shen et al. 2 Hubei province 12–22 January 2020 Mathematical model, dynamic compartmental model with population divided into five compartments: susceptible individuals, asymptomatic individuals during the incubation period, infectious individuals with symptoms, isolated individuals with treatment and recovered individuals R 0 = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\beta$\end{document} / \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\alpha$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\beta$\end{document} = mean person-to-person transmission rate/day in the absence of control interventions, using nonlinear least squares method to get its point estimate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\alpha$\end{document} = isolation rate = 6 6.49 6.31–6.66 Liu et al. 3 China and overseas 23 January 2020 Statistical exponential Growth, using SARS generation time = 8.4 days, SD = 3.8 days Applies Poisson regression to fit the exponential growth rateR 0 = 1/M(−𝑟)M = moment generating function of the generation time distributionr = fitted exponential growth rate 2.90 2.32–3.63 Liu et al. 3 China and overseas 23 January 2020 Statistical maximum likelihood estimation, using SARS generation time = 8.4 days, SD = 3.8 days Maximize log-likelihood to estimate R 0 by using surveillance data during a disease epidemic, and assuming the secondary case is Poisson distribution with expected value R 0 2.92 2.28–3.67 Read et al. 4 China 1–22 January 2020 Mathematical transmission model assuming latent period = 4 days and near to the incubation period Assumes daily time increments with Poisson-distribution and apply a deterministic SEIR metapopulation transmission model, transmission rate = 1.94, infectious period =1.61 days 3.11 2.39–4.13 Majumder et al. 5 Wuhan 8 December 2019 and 26 January 2020 Mathematical Incidence Decay and Exponential Adjustment (IDEA) model Adopted mean serial interval lengths from SARS and MERS ranging from 6 to 10 days to fit the IDEA model, 2.0–3.1 (2.55) / WHO China 18 January 2020 / / 1.4–2.5 (1.95) / Cao et al. 6 China 23 January 2020 Mathematical model including compartments Susceptible-Exposed-Infectious-Recovered-Death-Cumulative (SEIRDC) R = K 2 (L × D) + K(L + D) + 1L = average latent period = 7,D = average latent infectious period = 9,K = logarithmic growth rate of the case counts 4.08 / Zhao et al. 7 China 10–24 January 2020 Statistical exponential growth model method adopting serial interval from SARS (mean = 8.4 days, SD = 3.8 days) and MERS (mean = 7.6 days, SD = 3.4 days) Corresponding to 8-fold increase in the reporting rateR 0 = 1/M(−𝑟)𝑟 =intrinsic growth rateM = moment generating function 2.24 1.96–2.55 Zhao et al. 7 China 10–24 January 2020 Statistical exponential growth model method adopting serial interval from SARS (mean = 8.4 days, SD = 3.8 days) and MERS (mean = 7.6 days, SD = 3.4 days) Corresponding to 2-fold increase in the reporting rateR 0 = 1/M(−𝑟)𝑟 =intrinsic growth rateM = moment generating function 3.58 2.89–4.39 Imai (2020) 8 Wuhan January 18, 2020 Mathematical model, computational modelling of potential epidemic trajectories Assume SARS-like levels of case-to-case variability in the numbers of secondary cases and a SARS-like generation time with 8.4 days, and set number of cases caused by zoonotic exposure and assumed total number of cases to estimate R 0 values for best-case, median and worst-case 1.5–3.5 (2.5) / Julien and Althaus 9 China and overseas 18 January 2020 Stochastic simulations of early outbreak trajectories Stochastic simulations of early outbreak trajectories were performed that are consistent with the epidemiological findings to date 2.2 Tang et al. 10 China 22 January 2020 Mathematical SEIR-type epidemiological model incorporates appropriate compartments corresponding to interventions Method-based method and Likelihood-based method 6.47 5.71–7.23 Qun Li et al. 11 China 22 January 2020 Statistical exponential growth model Mean incubation period = 5.2 days, mean serial interval = 7.5 days 2.2 1.4–3.9 Averaged 3.28 CI, Confidence interval. Figure 1 Timeline of the R 0 estimates for the 2019-nCoV virus in China The first studies initially reported estimates of R 0 with lower values. Estimations subsequently increased and then again returned in the most recent estimates to the levels initially reported (Figure 1). A closer look reveals that the estimation method used played a role. The two studies using stochastic methods to estimate R 0, reported a range of 2.2–2.68 with an average of 2.44. 1 , 9 The six studies using mathematical methods to estimate R 0 produced a range from 1.5 to 6.49, with an average of 4.2. 2 , 4–6 , 8 , 10 The three studies using statistical methods such as exponential growth estimated an R 0 ranging from 2.2 to 3.58, with an average of 2.67. 3 , 7 , 11 Discussion Our review found the average R 0 to be 3.28 and median to be 2.79, which exceed WHO estimates from 1.4 to 2.5. The studies using stochastic and statistical methods for deriving R 0 provide estimates that are reasonably comparable. However, the studies using mathematical methods produce estimates that are, on average, higher. Some of the mathematically derived estimates fall within the range produced the statistical and stochastic estimates. It is important to further assess the reason for the higher R 0 values estimated by some the mathematical studies. For example, modelling assumptions may have played a role. In more recent studies, R 0 seems to have stabilized at around 2–3. R 0 estimations produced at later stages can be expected to be more reliable, as they build upon more case data and include the effect of awareness and intervention. It is worthy to note that the WHO point estimates are consistently below all published estimates, although the higher end of the WHO range includes the lower end of the estimates reviewed here. R 0 estimates for SARS have been reported to range between 2 and 5, which is within the range of the mean R 0 for COVID-19 found in this review. Due to similarities of both pathogen and region of exposure, this is expected. On the other hand, despite the heightened public awareness and impressively strong interventional response, the COVID-19 is already more widespread than SARS, indicating it may be more transmissible. Conclusions This review found that the estimated mean R 0 for COVID-19 is around 3.28, with a median of 2.79 and IQR of 1.16, which is considerably higher than the WHO estimate at 1.95. These estimates of R 0 depend on the estimation method used as well as the validity of the underlying assumptions. Due to insufficient data and short onset time, current estimates of R 0 for COVID-19 are possibly biased. However, as more data are accumulated, estimation error can be expected to decrease and a clearer picture should form. Based on these considerations, R 0 for COVID-19 is expected to be around 2–3, which is broadly consistent with the WHO estimate. Author contributions J.R. and A.W.S. had the idea, and Y.L. did the literature search and created the table and figure. Y.L. and A.W.S. wrote the first draft; A.A.G. drafted the final manuscript. All authors contributed to the final manuscript. Conflict of interest None declared.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China

              Previous studies have showed clinical characteristics of patients with the 2019 novel coronavirus disease (COVID-19) and the evidence of person-to-person transmission. Limited data are available for asymptomatic infections. This study aims to present the clinical characteristics of 24 cases with asymptomatic infection screened from close contacts and to show the transmission potential of asymptomatic COVID-19 virus carriers. Epidemiological investigations were conducted among all close contacts of COVID-19 patients (or suspected patients) in Nanjing, Jiangsu Province, China, from Jan 28 to Feb 9, 2020, both in clinic and in community. Asymptomatic carriers were laboratory-confirmed positive for the COVID-19 virus by testing the nucleic acid of the pharyngeal swab samples. Their clinical records, laboratory assessments, and chest CT scans were reviewed. As a result, none of the 24 asymptomatic cases presented any obvious symptoms while nucleic acid screening. Five cases (20.8%) developed symptoms (fever, cough, fatigue, etc.) during hospitalization. Twelve (50.0%) cases showed typical CT images of ground-glass chest and 5 (20.8%) presented stripe shadowing in the lungs. The remaining 7 (29.2%) cases showed normal CT image and had no symptoms during hospitalization. These 7 cases were younger (median age: 14.0 years; P=0.012) than the rest. None of the 24 cases developed severe COVID-19 pneumonia or died. The median communicable period, defined as the interval from the first day of positive nucleic acid tests to the first day of continuous negative tests, was 9.5 days (up to 21 days among the 24 asymptomatic cases). Through epidemiological investigation, we observed a typical asymptomatic transmission to the cohabiting family members, which even caused severe COVID-19 pneumonia. Overall, the asymptomatic carriers identified from close contacts were prone to be mildly ill during hospitalization. However, the communicable period could be up to three weeks and the communicated patients could develop severe illness. These results highlighted the importance of close contact tracing and longitudinally surveillance via virus nucleic acid tests. Further isolation recommendation and continuous nucleic acid tests may also be recommended to the patients discharged. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s11427-020-1661-4 and is accessible for authorized users.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                02 December 2020
                December 2020
                : 17
                : 23
                : 8994
                Affiliations
                [1 ]Institute of Global Health, University of Geneva, 1202 Geneva, Switzerland; liudmila.rozanova@ 123456unige.ch (L.R.); antoine.flahault@ 123456unige.ch (A.F.)
                [2 ]Global Studies Institute, University of Geneva, 1205 Geneva, Switzerland
                Author notes
                [* ]Correspondence: azizah.siddiqui@ 123456etu.unige.ch (A.F.S.); manuel.wiederkehr@ 123456etu.unige.ch (M.W.); Tel.: +41-(0)78-870-4907 (A.F.S.); +41-(0)79-762-7645 (M.W.)
                Author information
                https://orcid.org/0000-0003-0236-9277
                https://orcid.org/0000-0002-7922-7958
                Article
                ijerph-17-08994
                10.3390/ijerph17238994
                7730885
                33276678
                a7e5fb2c-7e05-48c9-8e99-5280a93184ae
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 October 2020
                : 24 November 2020
                Categories
                Case Report

                Public health
                covid-19,india,epidemiology,non-pharmaceutical interventions,social disruption,economic impact,health systems,global health,case study,coronavirus

                Comments

                Comment on this article