19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Griffithsin, a Highly Potent Broad-Spectrum Antiviral Lectin from Red Algae: From Discovery to Clinical Application

      review-article
      Marine Drugs
      MDPI
      griffithsin (GRFT), lectin, carbohydrate-binding, human immunodeficiency virus (HIV), microbicide, virus entry inhibitor

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Virus entry into a susceptible host cell is the first step in the formation of all viral diseases. Controlling viral infections by disrupting viral entry is advantageous for antibody-mediated neutralization by the host’s immune system and as a preventive and therapeutic antiviral strategy. Recently, several plant-derived carbohydrate-binding proteins (lectins) have emerged as a new class of antiviral biologics by taking advantage of a unique glycosylation pattern only found on the surface of viruses. In particular, a red algae-derived griffithsin (GRFT) protein has demonstrated superior in vitro and in vivo antiviral activity with minimum host toxicity against a variety of clinically relevant, enveloped viruses. This review examines the structural characteristics of GRFT, focusing on its carbohydrate-binding capability. Its in vitro antiviral profiles against human immunodeficiency virus (HIV) are also discussed followed by a description of the results from a combination study using anti-HIV drugs. The results of several studies regarding its novel antiviral mechanism of action are provided in conjunction with an explanation of viral resistance profiles to GRFT. In addition, its in vitro and in vivo host toxicity profiles are summarized with its pharmacokinetic behavior using in vivo efficacy study results. Also, a large-scale production and formulation strategy, as well as a drug delivery strategy, for GRFT as a new class of broad-spectrum microbicides is discussed. Finally, results from two ongoing clinical studies examining GRFT’s effects on viruses are presented.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Global epidemiology of HIV infection in men who have sex with men.

          Epidemics of HIV in men who have sex with men (MSM) continue to expand in most countries. We sought to understand the epidemiological drivers of the global epidemic in MSM and why it continues unabated. We did a comprehensive review of available data for HIV prevalence, incidence, risk factors, and the molecular epidemiology of HIV in MSM from 2007 to 2011, and modelled the dynamics of HIV transmission with an agent-based simulation. Our findings show that the high probability of transmission per act through receptive anal intercourse has a central role in explaining the disproportionate disease burden in MSM. HIV can be transmitted through large MSM networks at great speed. Molecular epidemiological data show substantial clustering of HIV infections in MSM networks, and higher rates of dual-variant and multiple-variant HIV infection in MSM than in heterosexual people in the same populations. Prevention strategies that lower biological transmission and acquisition risks, such as approaches based on antiretrovirals, offer promise for controlling the expanding epidemic in MSM, but their potential effectiveness is limited by structural factors that contribute to low health-seeking behaviours in populations of MSM in many parts of the world. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp.

            Griffithsin (GRFT), a novel anti-HIV protein, was isolated from an aqueous extract of the red alga Griffithsia sp. The 121-amino acid sequence of GRFT has been determined, and biologically active GRFT was subsequently produced by expression of a corresponding DNA sequence in Escherichia coli. Both native and recombinant GRFT displayed potent antiviral activity against laboratory strains and primary isolates of T- and M- tropic HIV-1 with EC50 values ranging from 0.043 to 0.63 nM. GRFT also aborted cell-to-cell fusion and transmission of HIV-1 infection at similar concentrations. High concentrations (e.g. 783 nM) of GRFT were not lethal to any tested host cell types. GRFT blocked CD4-dependent glycoprotein (gp) 120 binding to receptor-expressing cells and bound to viral coat glycoproteins (gp120, gp41, and gp160) in a glycosylation-dependent manner. GRFT preferentially inhibited gp120 binding of the monoclonal antibody (mAb) 2G12, which recognizes a carbohydrate-dependent motif, and the (mAb) 48d, which binds to CD4-induced epitope. In addition, GRFT moderately interfered with the binding of gp120 to sCD4. Further data showed that the binding of GRFT to soluble gp120 was inhibited by the monosaccharides glucose, mannose, and N-acetylglucosamine but not by galactose, xylose, fucose, N-acetylgalactosamine, or sialic acid-containing glycoproteins. Taken together these data suggest that GRFT is a new type of lectin that binds to various viral glycoproteins in a monosaccharide-dependent manner. GRFT could be a potential candidate microbicide to prevent the sexual transmission of HIV and AIDS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women.

              The Centre for the AIDS Program of Research in South Africa (CAPRISA) 004 trial assessed the effectiveness and safety of a 1% vaginal gel formulation of tenofovir, a nucleotide reverse transcriptase inhibitor, for the prevention of HIV acquisition in women. A double-blind, randomized controlled trial was conducted comparing tenofovir gel (n = 445 women) with placebo gel (n = 444 women) in sexually active, HIV-uninfected 18- to 40-year-old women in urban and rural KwaZulu-Natal, South Africa. HIV serostatus, safety, sexual behavior, and gel and condom use were assessed at monthly follow-up visits for 30 months. HIV incidence in the tenofovir gel arm was 5.6 per 100 women-years (person time of study observation) (38 out of 680.6 women-years) compared with 9.1 per 100 women-years (60 out of 660.7 women-years) in the placebo gel arm (incidence rate ratio = 0.61; P = 0.017). In high adherers (gel adherence > 80%), HIV incidence was 54% lower (P = 0.025) in the tenofovir gel arm. In intermediate adherers (gel adherence 50 to 80%) and low adherers (gel adherence < 50%), the HIV incidence reduction was 38 and 28%, respectively. Tenofovir gel reduced HIV acquisition by an estimated 39% overall, and by 54% in women with high gel adherence. No increase in the overall adverse event rates was observed. There were no changes in viral load and no tenofovir resistance in HIV seroconverters. Tenofovir gel could potentially fill an important HIV prevention gap, especially for women unable to successfully negotiate mutual monogamy or condom use.
                Bookmark

                Author and article information

                Journal
                Mar Drugs
                Mar Drugs
                marinedrugs
                Marine Drugs
                MDPI
                1660-3397
                06 October 2019
                October 2019
                : 17
                : 10
                : 567
                Affiliations
                College of Pharmacy, Dongguk University, Goyang 10326, Korea; lkj640@ 123456gmail.com ; Tel.: +82-31-961-5223
                Author information
                https://orcid.org/0000-0002-4630-8428
                Article
                marinedrugs-17-00567
                10.3390/md17100567
                6835697
                31590428
                a819b442-e9ea-4646-a1c4-44aa688dc22e
                © 2019 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 September 2019
                : 03 October 2019
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                griffithsin (grft),lectin,carbohydrate-binding,human immunodeficiency virus (hiv),microbicide,virus entry inhibitor

                Comments

                Comment on this article