9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long-Term Impacts of Defoliator Outbreaks on Larch Xylem Structure and Tree-Ring Biomass

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Defoliator insects are a major disturbance agent in many forests worldwide. During outbreaks, they can strongly reduce photosynthetic carbon uptake and impact tree growth. In the Alps, larch budmoth ( Zeiraphera diniana) outbreaks affect European larch ( Larix decidua) radial growth over several years. However, immediate and legacy effects on xylem formation, structure, and functionality are still largely unknown. In this study, we aimed at assessing the impact of budmoth defoliations on larch xylem anatomical features and tree-ring structure. Analyses were performed in the Lötschental (Swiss Alps) within (1,900 m a.s.l.) and above (2,200 m a.s.l.) the optimum elevational range of larch budmoth. We investigated variability of xylem anatomical traits along century-long tree-ring series of larch (host) and Norway spruce (non-host) trees. We identified eight outbreaks affecting larch xylem anatomy during the 20 th century, particularly at 1,900 m a.s.l. Tracheid number always showed a higher percent reduction than properties of individual cells. Cell lumen size was slightly reduced in the first 2–3 years of outbreaks, especially in the early part of the ring. The more carbon-demanding cell wall was thinned along the entire ring, but more evidently in the last part. Theoretical tree-ring hydraulic conductivity was reduced for several years (up to 6), mostly due to cell number decrease. Reduced cell wall area and cell number resulted in a strong reduction of the tree-ring biomass, especially in the first year of outbreak. Our study shows that, under carbon source limitations caused by natural defoliation, cell division is more impacted than wall thickening and cell enlargement (the least affected process). Consequences on both xylem hydraulic properties and tree-ring biomass should be considered when assessing long-term defoliator effects on xylem functioning, forest dynamics, and terrestrial carbon cycle.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Towards a worldwide wood economics spectrum.

          Wood performs several essential functions in plants, including mechanically supporting aboveground tissue, storing water and other resources, and transporting sap. Woody tissues are likely to face physiological, structural and defensive trade-offs. How a plant optimizes among these competing functions can have major ecological implications, which have been under-appreciated by ecologists compared to the focus they have given to leaf function. To draw together our current understanding of wood function, we identify and collate data on the major wood functional traits, including the largest wood density database to date (8412 taxa), mechanical strength measures and anatomical features, as well as clade-specific features such as secondary chemistry. We then show how wood traits are related to one another, highlighting functional trade-offs, and to ecological and demographic plant features (growth form, growth rate, latitude, ecological setting). We suggest that, similar to the manifold that tree species leaf traits cluster around the 'leaf economics spectrum', a similar 'wood economics spectrum' may be defined. We then discuss the biogeography, evolution and biogeochemistry of the spectrum, and conclude by pointing out the major gaps in our current knowledge of wood functional traits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Forest disturbances under climate change

            Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Letter to the Editor

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                15 July 2020
                2020
                : 11
                : 1078
                Affiliations
                [1] 1Swiss Federal Institute for Forest, Snow and Landscape Research WSL , Birmensdorf, Switzerland
                [2] 2Department TeSAF, Università degli Studi di Padova , Padova, Italy
                [3] 3Laboratory of Plant Ecology, Ghent University , Ghent, Belgium
                Author notes

                Edited by: Jian-Guo Huang, Chinese Academy of Sciences, China

                Reviewed by: Angelo Rita, University of Basilicata, Italy; Ze-Xin Fan, Xishuangbanna Tropical Botanical Garden (CAS), China

                *Correspondence: Daniele Castagneri, daniele.castagneri@ 123456wsl.ch

                This article was submitted to Functional Plant Ecology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2020.01078
                7378862
                32765561
                a86d5f19-42e9-4915-a457-d3884de86388
                Copyright © 2020 Castagneri, Prendin, Peters, Carrer, von Arx and Fonti

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 March 2020
                : 30 June 2020
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 71, Pages: 10, Words: 5304
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                cell wall,defoliation,insect outbreak,larix decidua,quantitative wood anatomy,tracheid,xylem functional traits,wood biomass

                Comments

                Comment on this article