4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Schwann Cells in the Tumor Microenvironment: Need More Attention

      review-article
      1 , 2 , 3 ,
      Journal of Oncology
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The tumor microenvironment (TME), which is composed of various cell components and signaling molecules, plays an important role in the occurrence and progression of tumors and has become the central issue of current cancer research. In recent years, as a part of the TME, the peripheral nervous system (PNS) has attracted increasing attention. Moreover, emerging evidence shows that Schwann cells (SCs), which are the most important glial cells in the PNS, are not simply spectators in the TME. In this review article, we focused on the up-to-date research progress on SCs in the TME and introduced our point of view. In detail, we described that under two main tumor-nerve interaction patterns, perineural invasion (PNI) and tumor innervation, SCs were reprogrammed and acted as important participants. We also investigated the newest mechanisms between the interactions of SCs and tumor cells. In addition, SCs can have profound impacts on other cellular components in the TME, such as immune cells and cancer-associated fibroblasts (CAFs), involving immune regulation, tumor-related pain, and nerve remodeling. Overall, these innovative statements can expand the scope of the TME, help fully understand the significant role of SCs in the tumor-nerve-immune axis, and propose enlightenments to innovate antitumor therapeutic methods and future research.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer

          SUMMARY Brain metastasis represents a substantial source of morbidity and mortality in various cancers, and is characterized by high resistance to chemotherapy. Here we define the role of the most abundant cell type in the brain, the astrocyte, in promoting brain metastasis. Breast and lung cancer cells express protocadherin 7 (PCDH7) to favor the assembly of carcinoma-astrocyte gap junctions composed of connexin 43 (Cx43). Once engaged with the astrocyte gap-junctional network, brain metastatic cancer cells employ these channels to transfer the second messenger cGAMP to astrocytes, activating the STING pathway and production of inflammatory cytokines IFNα and TNFα. As paracrine signals, these factors activate the STAT1 and NF-κB pathways in brain metastatic cells, which support tumour growth and chemoresistance. The orally bioavailable modulators of gap junctions meclofenamate and tonabersat break this paracrine loop, and we provide proof-of-principle for the applicability of this therapeutic strategy to treat established brain metastasis.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing.

            H F Dvorak (1986)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Perineural invasion in cancer: a review of the literature.

              Perineural invasion (PNI) is the process of neoplastic invasion of nerves and is an under-recognized route of metastatic spread. It is emerging as an important pathologic feature of many malignancies, including those of the pancreas, colon and rectum, prostate, head and neck, biliary tract, and stomach. For many of these malignancies, PNI is a marker of poor outcome and a harbinger of decreased survival. PNI is a distinct pathologic entity that can be observed in the absence of lymphatic or vascular invasion. It can be a source of distant tumor spread well beyond the extent of any local invasion; and, for some tumors, PNI may be the sole route of metastatic spread. Despite increasing recognition of this metastatic process, there has been little progress in the understanding of molecular mechanisms behind PNI and, to date, no targeted treatment modalities aimed at this pathologic entity. The objectives of this review were to lay out a clear definition of PNI to highlight its significance in those malignancies in which it has been studied best. The authors also summarized current theories on the molecular mediators and pathogenesis of PNI and introduced current research models that are leading to advancements in the understanding of this metastatic process. Copyright (c) 2009 American Cancer Society.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Oncol
                J Oncol
                jo
                Journal of Oncology
                Hindawi
                1687-8450
                1687-8469
                2022
                10 February 2022
                : 2022
                : 1058667
                Affiliations
                1Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
                2Department of Digestive and Transplant Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
                3Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, Shandong 250014, China
                Author notes

                Academic Editor: Ferdinand Frauscher

                Author information
                https://orcid.org/0000-0003-0399-4453
                Article
                10.1155/2022/1058667
                8853772
                37342680
                a8a7ca95-d7ff-4791-858c-0be8f8a0f605
                Copyright © 2022 Leqi Sun et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 November 2021
                : 20 January 2022
                Categories
                Review Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article