20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Herpes simplex virus-1 infects the olfactory bulb shortly following ocular infection and exhibits a long-term inflammatory profile in the form of effector and HSV-1-specific T cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Herpes simplex virus 1 (HSV-1) infection can result in a life-threatening condition known as herpes simplex encephalitis (HSE). Trafficking patterns by which the virus reaches the central nervous system (CNS) following ocular infection are unresolved. We evaluated early viral dissemination pathways following ocular infection that involve trafficking to the olfactory bulb (OB). Additionally, we have characterized the capacity of HSV-1 to establish latency within OB tissue and profiled the local T lymphocyte response over the course of the acute infection into latency.

          Methods

          Scarified corneas of C57BL/6 or reporter-inducible Rosa mice (Rosa Td/Tm) were inoculated with HSV-1 and assessed for viral dissemination into the peripheral nervous system (PNS) and CNS by RT-PCR and confocal microscopy. T cells and the resident microglia activation signatures were analyzed by flow cytometry. T cell effector function in the form of IFN-γ secretion was measured by T cells isolated from OB in comparison to T cells from other nervous system sites known to harbor HSV-1-specific memory T cells.

          Results

          Following ocular infection, HSV-1 viral titers from nasal secretions were detected as early as 48 h through 8 days post infection (8 DPI). HSV-1 gene expression was expressed as early as 2 days following ocular infection in the OB and was consistent with an enhanced expression in the ophthalmic, maxillary, and mandibular branch of the trigeminal nerve ganglia (TG). Rosa fluorescence protein expression (RFP +) representing HSV-1-infected cells from Rosa Td/Tm mice was detected in the OB before other areas of the CNS (2 DPI). Additionally, during acute infection, most infected cells appeared to be anatomically distributed within the OB rather than other regions of the CNS. During latency (i.e., 30 DPI and beyond) despite no detectable infectious virus or lytic gene expression and low levels of latency associated transcripts, total effector (CD44 + CD62 ) CD4 + T, CD8 + T, HSV-1-specific CD8 + T cells, and MHC class II positive resident microglia numbers continued to increase. CD4 + and CD8 + T cell populations isolated from the OB during latency were capable of responding to PMA/ionomycin in the production of IFN-γ similar to T cells from other tissue that possess latent virus including the TG and brain stem.

          Conclusions

          It is currently understood that HSV-1 traffics to the TG following ocular infection. We have identified a second conduit by which HSV-1 can directly access the CNS bypassing the brain stem. We have also recognized that the OB is unique in that during HSV-1 latency, latency-associated transcripts levels were marginally above uninfected controls. Despite these findings, the local immune response mimicked the phenotype of an active infection during latency.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012

          Background Herpes simplex virus type 1 (HSV-1) commonly causes orolabial ulcers, while HSV-2 commonly causes genital ulcers. However, HSV-1 is an increasing cause of genital infection. Previously, the World Health Organization estimated the global burden of HSV-2 for 2003 and for 2012. The global burden of HSV-1 has not been estimated. Methods We fitted a constant-incidence model to pooled HSV-1 prevalence data from literature searches for 6 World Health Organization regions and used 2012 population data to derive global numbers of 0-49-year-olds with prevalent and incident HSV-1 infection. To estimate genital HSV-1, we applied values for the proportion of incident infections that are genital. Findings We estimated that 3709 million people (range: 3440–3878 million) aged 0–49 years had prevalent HSV-1 infection in 2012 (67%), with highest prevalence in Africa, South-East Asia and Western Pacific. Assuming 50% of incident infections among 15-49-year-olds are genital, an estimated 140 million (range: 67–212 million) people had prevalent genital HSV-1 infection, most of which occurred in the Americas, Europe and Western Pacific. Conclusions The global burden of HSV-1 infection is huge. Genital HSV-1 burden can be substantial but varies widely by region. Future control efforts, including development of HSV vaccines, should consider the epidemiology of HSV-1 in addition to HSV-2, and especially the relative contribution of HSV-1 to genital infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Herpes simplex epithelial and stromal keratitis: an epidemiologic update.

            Herpes simplex virus (HSV) is associated with a variety of ocular diseases, including epithelial and stromal keratitis. HSV can cause stromal opacification and is believed to be the leading cause of infectious blindness in the developed world. An improved understanding of the global burden of HSV keratitis, including the incidence of severe vision loss, could have a significant effect on prevention and treatment and place it in perspective among causes of corneal ulceration. We found that the global incidence of HSV keratitis is roughly 1.5 million, including 40,000 new cases of severe monocular visual impairment or blindness each year. We also discuss relevant epidemiologic issues regarding HSV epithelial and stromal disease. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia.

              This study challenges the concept that herpes simplex virus type 1 (HSV-1) latency represents a silent infection that is ignored by the host immune system, and suggests antigen-directed retention of memory CD8(+) T cells. CD8(+) T cells specific for the immunodominant gB(498-505) HSV-1 epitope are selectively retained in the ophthalmic branch of the latently infected trigeminal ganglion, where they acquire and maintain an activation phenotype and the capacity to produce IFN-gamma. Some CD8(+) T cells showed TCR polarization to junctions with neurons. A gB(498-505) peptide-specific CD8(+) T cell clone can block HSV-1 reactivation from latency in ex vivo trigeminal ganglion cultures. We conclude that CD8(+) T cells provide active surveillance of HSV-1 gene expression in latently infected sensory neurons.
                Bookmark

                Author and article information

                Contributors
                chandra-menendez@ouhsc.edu
                405-271-8784 , dan-carr@ouhsc.edu
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                23 June 2017
                23 June 2017
                2017
                : 14
                : 124
                Affiliations
                [1 ]Departments of Microbiology, Immunology, Oklahoma City, OK USA
                [2 ]ISNI 0000 0001 2179 3618, GRID grid.266902.9, Department of Ophthalmology, , University of Oklahoma Health Sciences Center, ; DMEI #415A, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104 USA
                Author information
                http://orcid.org/0000-0003-1954-2478
                Article
                903
                10.1186/s12974-017-0903-9
                5481928
                a8cb042b-2631-4ad8-8494-a438dec4ec0a
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 11 February 2017
                : 15 June 2017
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: AI053108
                Award ID: T32AI007633
                Funded by: FundRef http://dx.doi.org/10.13039/100001818, Research to Prevent Blindness;
                Award ID: unrestricted
                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                Neurosciences
                hsv-1,dissemination,olfactory bulb,long-term inflammation
                Neurosciences
                hsv-1, dissemination, olfactory bulb, long-term inflammation

                Comments

                Comment on this article