9
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before September 30, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Potential Deleterious Effects of Vasopressin in Chronic Kidney Disease and Particularly Autosomal Dominant Polycystic Kidney Disease

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The antidiuretic hormone vasopressin is crucial for regulating free water clearance in normal physiology. However, it has also been hypothesized that vasopressin has deleterious effects on the kidney. Vasopressin is elevated in animals and patients with chronic kidney disease. Suppression of vasopressin activity reduces proteinuria, renal hypertrophy, glomerulosclerosis and tubulointerstitial fibrosis in animal models. The potential detrimental influence of vasopressin is probably mediated by its effects on mesangial cell proliferation, renin secretion, renal hemodynamics, and blood pressure. In this review, we discuss the increasing body of evidence pointing towards the contribution of vasopressin to chronic kidney disease progression in general and to autosomal dominant polycystic kidney disease in particular. These data allude to the possibility that interventions directed at lowering vasopressin activity, for example by the administration of vasopressin receptor antagonists or by drinking more water, may be beneficial in chronic kidney disease.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist.

          The polycystic kidney diseases (PKDs) are a group of genetic disorders causing significant renal failure and death in children and adults. There are no effective treatments. Two childhood forms, autosomal recessive PKD (ARPKD) and nephronophthisis (NPH), are characterized by collecting-duct cysts. We used animal models orthologous to the human disorders to test whether a vasopressin V2 receptor (VPV2R) antagonist, OPC31260, would be effective against early or established disease. Adenosine-3',5'-cyclic monophosphate (cAMP) has a major role in cystogenesis, and the VPV2R is the major cAMP agonist in the collecting duct. OPC31260 administration lowered renal cAMP, inhibited disease development and either halted progression or caused regression of established disease. These results indicate that OPC31260 may be an effective treatment for these disorders and that clinical trials should be considered.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease.

            Autosomal dominant polycystic kidney disease (ADPKD) is a leading cause of end-stage renal disease. The vasopressin V2 receptor (VPV2R) antagonist OPC31260 has been effective in two animal models of PKD with pathologies that are probably related. Here we show, in a mouse model of ADPKD (Pkd2(-/tm1Som)), a similar cellular phenotype and response to OPC31260 treatment, with reduction of renal cyclic AMP (cAMP) levels, prevention of renal enlargement, marked inhibition of cystogenesis and protection of renal function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat.

              cAMP plays a major role in cystogenesis. Recent in vitro studies suggested that cAMP stimulates B-Raf/ERK activation and proliferation of cyst-derived cells in a Ca(2+) inhibitable, Ras-dependent manner. OPC-31260, a vasopressin V2 receptor (VPV2) antagonist, was shown to lower renal cAMP and inhibit renal disease development and progression in models orthologous to human cystic diseases. Here it is shown that OPC-41061, an antagonist chosen for its potency and selectivity for human VPV2, is effective in PCK rats. PCK kidneys have increased Ras-GTP and phosphorylated ERK levels and 95-kD/68-kD B-Raf ratios, changes that are corrected by the administration of OPC-31260 or OPC-41061. These results support the importance of cAMP in the pathogenesis of polycystic kidney disease, confirm the effectiveness of a VPV2 antagonist to be used in clinical trials for this disease, and suggest that OPC-31260 and OPC-41061 inhibit Ras/mitogen-activated protein kinase signaling in polycystic kidneys.
                Bookmark

                Author and article information

                Journal
                KBR
                Kidney Blood Press Res
                10.1159/issn.1420-4096
                Kidney and Blood Pressure Research
                S. Karger AG
                978-3-8055-9769-2
                978-3-8055-9770-8
                1420-4096
                1423-0143
                2011
                June 2011
                21 June 2011
                : 34
                : 4
                : 235-244
                Affiliations
                aDivision of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, and bDepartment of Nephrology, Erasmus Medical Center, Rotterdam, The Netherlands
                Author notes
                *Ron T. Gansevoort, Division of Nephrology, Department of Medicine, University Medical Center Groningen, PO Box 30.001, NL–9700 RB Groningen (The Netherlands), Tel. +31 50 361 6161, E-Mail r.t.gansevoort@int.umcg.nl
                Article
                326902 Kidney Blood Press Res 2011;34:235–244
                10.1159/000326902
                21691126
                a8f52a8e-0c54-4c4a-b73f-c1c1100c25e4
                © 2011 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 5, Tables: 2, Pages: 10
                Categories
                Paper

                Cardiovascular Medicine,Nephrology
                Albuminuria,Proteinuria,Glomerular filtration rate,Autosomal dominant polycystic kidney disease,Vasopressin,Copeptin,Chronic kidney disease

                Comments

                Comment on this article